On the convergence and optimization of the Baker-Campbell-Hausdorff formula

被引:39
作者
Blanes, S [1 ]
Casas, F [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
BCH formula; convergence; Lie algebras; Lie groups;
D O I
10.1016/j.laa.2003.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the problem of the convergence of the Baker-Campbell-Hausdorff series for Z = log(e(X)e(Y)) is revisited. We collect some previous results about the convergence domain and present a new estimate which improves all of them. We also provide a new expression of the truncated Lie presentation of the series up to sixth degree in X and Y requiring the minimum number of commutators. Numerical experiments suggest that a similar accuracy is reached with this approximation at a considerably reduced computational cost. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 29 条
  • [1] [Anonymous], 1997, FDN LIE THEORY LIE T
  • [2] EXPLICIT SOLUTION OF CONTINUOUS BAKER-CAMPBELL-HAUSDORFF PROBLEM AND A NEW EXPRESSION FOR PHASE OPERATOR
    BIALYNIC.I
    MIELNIK, B
    PLEBANSKI, J
    [J]. ANNALS OF PHYSICS, 1969, 51 (01) : 187 - +
  • [3] Magnus and Fer expansions for matrix differential equations: The convergence problem
    Blanes, S
    Casas, F
    Oteo, JA
    Ros, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : 259 - 268
  • [4] High order optimized geometric integrators for linear differential equations
    Blanes, S
    Casas, F
    Ros, J
    [J]. BIT NUMERICAL MATHEMATICS, 2002, 42 (02) : 262 - 284
  • [5] Bourbaki Nicolas, 1989, Elements of Mathematics (Berlin)
  • [6] CASAS F, 2002, K2002 NTNU
  • [7] Day J., 1991, LINEAR MULTILINEAR A, V29, P207, DOI DOI 10.1080/03081089108818072
  • [8] DYNKIN EB, 1947, DOKL AKAD NAUK SSSR+, V57, P323
  • [9] THE FORMAL POWER SERIES FOR LOG E-X E-Y
    GOLDBERG, K
    [J]. DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) : 13 - 21
  • [10] Hairer E., 2010, Springer Series in Computational Mathematics, V31