On the Behavior of Periodic Solutions of Planar Autonomous Hamiltonian Systems with Multivalued Periodic Perturbations

被引:2
作者
Makarenkov, Oleg [1 ,2 ]
Malaguti, Luisa [3 ]
Nistri, Paolo [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[3] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, I-42100 Reggio Emilia, Italy
[4] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2011年 / 30卷 / 02期
关键词
Planar Hamiltonian systems; characteristic multipliers; multivalued periodic perturbations; periodic solutions; approximation formula; BIFURCATION;
D O I
10.4171/ZAA/1428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Aim of the paper is to provide a method to analyze the behavior of T-periodic solutions x(epsilon), epsilon > 0, of a perturbed planar Hamiltonian system near a cycle x(0), of smallest period T, of the unperturbed system. The perturbation is represented by a T-periodic multivalued map which vanishes as epsilon -> 0. In several problems from nonsmooth mechanical systems this multivalued perturbation comes from the Filippov regularization of a nonlinear discontinuous T-periodic term. Through the paper, assuming the existence of a T-periodic solution x(epsilon) for epsilon > 0 small, under the condition that x(0) is a nondegenerate cycle of the linearized unperturbed Hamiltonian system we provide a formula for the distance between any point x(0)(t) and the trajectories x(epsilon)([0, T)) along a transversal direction to x(0)(t).
引用
收藏
页码:129 / 144
页数:16
相关论文
共 23 条
  • [1] [Anonymous], 1967, Lectures on the mathematical theory of stability
  • [2] [Anonymous], DEGRUYTER SER NONLIN
  • [3] [Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
  • [4] Aubin JP, 1984, GRUNDLEHREN MATH WIS
  • [5] AWREJCEWICZ J, 2003, WORLD SCI SER NONL A, V45
  • [6] AWREJCEWICZ J, 2007, WORLD SCI SER NONL A, V60
  • [7] BORISOVICH YG, 1986, INTRO THEORY MULTIVA
  • [8] BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS
    CHICONE, C
    JACOBS, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) : 433 - 486
  • [9] FECKAN M, 1997, APPL MATH, V42, P393
  • [10] Filippov A.F., 1988, MATH APPL SOVIET SER, V18