A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system

被引:78
|
作者
Xu, Aotian [1 ,2 ]
Qin, Chao [1 ,2 ]
Lang, Yue [1 ,2 ]
Wang, Mingyue [1 ,2 ]
Lin, Mengyang [1 ,2 ]
Li, Chuang [1 ,2 ]
Zhang, Rui [1 ,2 ]
Tang, Jun [1 ,2 ]
机构
[1] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100193, Peoples R China
[2] China Agr Univ, Coll Vet Med, Beijing 100193, Peoples R China
关键词
CRISPR/Cas9; Genome engineering; Knock in; Knock out; Large DNA virus; Pseudorabies virus; DNA; INTEGRATION; ZEBRAFISH; NUCLEASE;
D O I
10.1007/s10529-015-1796-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The broad host range of pseudorabies virus (PRV) and large capacity for foreign DNA make it a promising vector for the development of vaccines and agents of gene therapy. We show that up to 100 % viral gene disrupting efficiency was achieved by simple co-transfection of the purified PRV genomes with the clustered regularly-interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) into cells. Furthermore, CRISPR/Cas9-mediated knock-in of > 4-kb-long DNA cassettes into the PRV genome at a positive rate of 50 % by a homology-independent DNA repair mechanism without constructing homology arms. This approach requires only a simple plasmid construction and is applicable to knock-in of other foreign genes. Our studies offered simple and efficient methods to manipulate PRV.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [21] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    Kulishova, L. M.
    Vokhtantsev, I. P.
    Kim, D. V.
    Zharkov, D. O.
    MOLECULAR BIOLOGY, 2023, 57 (02) : 258 - 271
  • [22] Editing the human cytomegalovirus genome with the CRISPR/Cas9 system
    King, Melvin W.
    Munger, Joshua
    VIROLOGY, 2019, 529 : 186 - 194
  • [23] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    L. M. Kulishova
    I. P. Vokhtantsev
    D. V. Kim
    D. O. Zharkov
    Molecular Biology, 2023, 57 : 258 - 271
  • [24] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [25] Targeting hepatitis B virus with CRISPR/Cas9 approach
    Martinez, Maria Guadalupe
    Inchauspe, Aurore
    Delberghe, Elodie
    Chapus, Fleur
    Neveu, Gregory
    Alam, Antoine
    Carter, Kara
    Testoni, Barbara
    Zoulim, Fabien
    JOURNAL OF HEPATOLOGY, 2020, 73 : S841 - S842
  • [26] Virus-Based CRISPR/Cas9 Genome Editing in Plants
    Liu, Huawei
    Zhang, Baohong
    TRENDS IN GENETICS, 2020, 36 (11) : 810 - 813
  • [27] Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System
    Chen, Weizhong
    Zhang, Yifei
    Yeo, Won-Sik
    Bae, Taeok
    Ji, Quanjiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) : 3790 - 3795
  • [28] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    Journal of Genetics and Genomics, 2016, 43 (05) : 227 - 228
  • [29] Cascading CRISPR–Cas9 genome edits
    Clyde D.
    Nature Reviews Genetics, 2021, 22 (3) : 134 - 134
  • [30] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41