An atomistic study of the deformation behavior of tungsten nanowires

被引:16
作者
Xu, Shuozhi [1 ]
Su, Yanqing [2 ]
Chen, Dengke [3 ]
Li, Longlei [4 ]
机构
[1] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[3] Georgia Inst Technol, GWW Sch Mech Engn, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2017年 / 123卷 / 12期
基金
美国国家科学基金会;
关键词
CENTERED-CUBIC TUNGSTEN; MOLECULAR-DYNAMICS; PLASTIC-DEFORMATION; DISLOCATION MULTIPLICATION; METAL MICROPILLARS; CRYSTAL PLASTICITY; TRANSITION-METALS; NANOPILLARS; NANOSCALE; STRENGTH;
D O I
10.1007/s00339-017-1414-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large-scale atomistic simulations are performed to study tensile and compressive < 112 > loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior.
引用
收藏
页数:9
相关论文
共 49 条
  • [1] AN IMPROVED N-BODY SEMIEMPIRICAL MODEL FOR BODY-CENTERED CUBIC TRANSITION-METALS
    ACKLAND, GJ
    THETFORD, R
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 56 (01): : 15 - 30
  • [2] Many-body central force potentials for tungsten
    Bonny, G.
    Terentyev, D.
    Bakaev, A.
    Grigorev, P.
    Van Neck, D.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (05)
  • [3] Sample shape and temperature strongly influence the yield strength of metallic nanopillars
    Cao, Ajing
    Ma, E.
    [J]. ACTA MATERIALIA, 2008, 56 (17) : 4816 - 4828
  • [4] Shape memory effects and pseudoelasticity in bcc metallic nanowires
    Cao, Ajing
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
  • [5] Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks
    Chakraborty, Subhendu
    Zhang, Jiaxi
    Ghosh, Somnath
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 121 : 23 - 34
  • [6] A universal scaling law for the strength of metal micropillars and nanowires
    Dou, R.
    Derby, B.
    [J]. SCRIPTA MATERIALIA, 2009, 61 (05) : 524 - 527
  • [7] A SIMPLE EMPIRICAL N-BODY POTENTIAL FOR TRANSITION-METALS
    FINNIS, MW
    SINCLAIR, JE
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1984, 50 (01): : 45 - 55
  • [8] Nanoscale gold pillars strengthened through dislocation starvation
    Greer, Julia R.
    Nix, William D.
    [J]. PHYSICAL REVIEW B, 2006, 73 (24)
  • [9] Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect
    Greer, Julia R.
    De Hosson, Jeff Th. M.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (06) : 654 - 724
  • [10] The In-situ Mechanical Testing of Nanoscale Single-crystalline Nanopillars
    Greer, Julia R.
    Kim, Ju-Young
    Burek, Michael J.
    [J]. JOM, 2009, 61 (12) : 19 - 25