GENERALIZATIONS OF SHERMAN'S INEQUALITY VIA FINK'S IDENTITY AND GREEN'S FUNCTION

被引:0
作者
Bradanovic, S. Ivelic [1 ]
Latif, N. [2 ]
Pecaric, J. [3 ]
机构
[1] Univ Split, Split, Croatia
[2] Govt Coll Univ, Lahore, Pakistan
[3] Univ Zagreb, Zagreb, Croatia
关键词
BOUNDS;
D O I
10.1007/s11253-018-1562-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New generalizations of Sherman's inequality for n-convex functions are obtained with the help of Fink's identity and Green's function. By using inequalities for the Chebyshev functional, we establish some new Ostrowski-and Gruss-type inequalities related to these generalizations.
引用
收藏
页码:1192 / 1204
页数:13
相关论文
共 10 条
[1]  
AGARWAL R. P., 2016, J. Inequal. Appl., V6
[2]   SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS [J].
Cerone, P. ;
Dragomir, S. S. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01) :159-170
[3]  
FINK AM, 1992, CZECH MATH J, V42, P289
[4]  
Hardy J. Littlewood, 1952, The Mathematical Gazette, DOI DOI 10.1017/S0025557200027455
[5]  
Jaksetic J, 2013, J CONVEX ANAL, V20, P181
[6]   Vector joint majorization and generalization of Csiszar-Korner's inequality for f-divergence [J].
Niezgoda, Marek .
DISCRETE APPLIED MATHEMATICS, 2016, 198 :195-205
[7]   REMARKS ON SHERMAN LIKE INEQUALITIES FOR (α,β) -CONVEX FUNCTIONS [J].
Niezgoda, Marek .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04) :1579-1590
[8]  
Pecaric J., 1992, Convex functions, partial orderings, and statistical applications
[10]   Completely convex functions and lidstone series [J].
Widder, D. V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1942, 51 (1-3) :387-398