A note on compact Weingarten hypersurfaces embedded in Rn+1

被引:0
作者
de Lima, Eudes L. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Paraiba, Brazil
关键词
Weingarten hypersurface; Higher order mean curvature; Round sphere; CURVATURE;
D O I
10.1007/s00013-018-1233-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the round sphere is the only compact Weingarten hypersurface embedded in the Euclidean space such that H-r = aH + b, for constants a, b is an element of R. Here, H-r stands for the r-th mean curvature and H denotes the standard mean curvature of the hypersurface.
引用
收藏
页码:669 / 672
页数:4
相关论文
共 11 条
[1]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]  
Alexandrov AD., 1958, Vestn. Leningr. Univ, V13, P14
[3]  
[Anonymous], 1899, NACH KGL GES WISS MP
[4]   SOME NEW CHARACTERIZATIONS OF THE EUCLIDEAN SPHERE [J].
CHERN, SS .
DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) :279-290
[5]   NEW EXAMPLES OF CONSTANT MEAN-CURVATURE IMMERSIONS OF (2K-1)-SPHERES INTO EUCLIDEAN 2K-SPACE [J].
HSIANG, WY ;
TENG, ZH ;
YU, WC .
ANNALS OF MATHEMATICS, 1983, 117 (03) :609-625
[6]  
Hsiung C.-C., 1954, Math. Scand, V2, P285, DOI 10.7146/math.scand.a-10415
[7]  
KOREVAAR NJ, 1988, J DIFFER GEOM, V27, P221
[8]   On the deflexion of closed areas with a positive flexion. [J].
Liebmann, H .
MATHEMATISCHE ANNALEN, 1900, 53 :81-112
[9]  
ROS A, 1988, J DIFFER GEOM, V27, P215
[10]  
Ros A., 1987, Rev. Mat. Iberoamericana, V3, P447, DOI [DOI 10.4171/RMI/58, 10.4171/RMI/58]