Accelerated 4D Quantitative Single Point EPR Imaging Using Model-Based Reconstruction

被引:8
作者
Jang, Hyungseok [1 ]
Matsumoto, Shingo [2 ]
Devasahayam, Nallathamby [2 ]
Subramanian, Sankaran [2 ]
Zhuo, Jiachen [3 ]
Krishna, Murali C. [2 ]
McMillan, Alan B. [1 ]
机构
[1] Univ Wisconsin, Dept Radiol, Wisconsin Inst Med Res, Madison, WI 53705 USA
[2] NCI, Radiat Biol Branch, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[3] Univ Maryland, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
基金
美国国家卫生研究院;
关键词
Electron paramagnetic resonance imaging; quantitative imaging; single-point imaging; model-based reconstruction; k-space extrapolation; UNDERSAMPLED DATA; RESOLUTION; MRI; ACQUISITION;
D O I
10.1002/mrm.25282
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeElectron paramagnetic resonance imaging has surfaced as a promising noninvasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from single-point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue. MethodsIn this study, methods for accelerated single-point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T-2(*) decay of a free induction delay). In bilateral kspace extrapolation, more k-space samples are obtained in a sparsely sampled region by bilaterally extrapolating data from temporally neighboring k-spaces. To improve the accuracy of T-2(*) estimation, a principal component analysis-based method was implemented. ResultsIn a computer simulation and a phantom experiment, the proposed methods showed its capability for reliable T-2(*) estimation with high acceleration (8-fold, 15-fold, and 30-fold accelerations for 61x61x61, 95x95x95, and 127x127x127 matrix, respectively). ConclusionBy applying bilateral k-space extrapolation and model-based reconstruction, improved scan times with higher spatial resolution can be achieved in the current single-point electron paramagnetic resonance imaging modality. Magn Reson Med 73:1692-1701, 2015. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1692 / 1701
页数:10
相关论文
共 32 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Rapid gridding reconstruction with a minimal oversampling ratio [J].
Beatty, PJ ;
Nishimura, DG ;
Pauly, JM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (06) :799-808
[3]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[4]   Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR [J].
Devasahayam, Nallathamby ;
Subramanian, Sankaran ;
Murugesan, Ramachandran ;
Hyodo, Fuminori ;
Matsumoto, Ken-Ichiro ;
Mitchell, James B. ;
Krishna, Murali C. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (04) :776-783
[5]   Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping [J].
Doneva, Mariya ;
Boernert, Peter ;
Eggers, Holger ;
Stehning, Christian ;
Senegas, Julien ;
Mertins, Alfred .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) :1114-1120
[6]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[7]   Four-Channel Surface Coil Array for 300-MHz Pulsed EPR Imaging: Proof-of-Concept Experiments [J].
Enomoto, Ayano ;
Hirata, Hiroshi ;
Matsumoto, Shingo ;
Saito, Keita ;
Subramanian, Sankaran ;
Krishna, Murali C. ;
Devasahayam, Nallathamby .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) :853-858
[8]   Compressed sensing in dynamic MRI [J].
Gamper, Urs ;
Boesiger, Peter ;
Kozerke, Sebastian .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (02) :365-373
[9]  
Gonzalez R., 2002, DIGITAL IMAGE PROCES, V2nd, P75
[10]   T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing [J].
Huang, Chuan ;
Graff, Christian G. ;
Clarkson, Eric W. ;
Bilgin, Ali ;
Altbach, Maria I. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (05) :1355-1366