4DCT imaging to assess radiomics feature stability: An investigation for thoracic cancers

被引:56
作者
Larue, Ruben T. H. M. [1 ]
Van De Voorde, Lien [1 ]
van Timmeren, Janna E. [1 ]
Leijenaar, Ralph T. H. [1 ]
Berbee, Maaike [1 ]
Sosef, Meindert N. [2 ]
Schreurs, Wendy M. J. [3 ]
van Elmpt, Wouter [1 ]
Lambin, Philippe [1 ]
机构
[1] Maastricht Univ, Med Ctr, GROW School Oncol & Dev Biol, Dept Radiat Oncol MAASTRO,D Lab, Maastricht, Netherlands
[2] Zuyderland Med Ctr, Dept Surg, Heerlen, Netherlands
[3] Zuyderland Med Ctr, Dept Nucl Med, Heerlen, Netherlands
关键词
Radiomics; Oesophageal cancer; Lung cancer; Test-retest; 4D-CT; Feature stability; DECISION-SUPPORT-SYSTEMS; LEARNING HEALTH-CARE; TUMOR HETEROGENEITY; TEST-RETEST; TEXTURAL FEATURES; ESOPHAGEAL; VARIABILITY; REPRODUCIBILITY; CHEMORADIOTHERAPY; CHEMOTHERAPY;
D O I
10.1016/j.radonc.2017.07.023
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Quantitative tissue characteristics derived from medical images, also called radiomics, contain valuable prognostic information in several tumour-sites. The large number of features available increases the risk of overfitting. Typically test-retest CT-scans are used to reduce dimensionality and select robust features. However, these scans are not always available. We propose to use different phases of respiratory-correlated 4D CT-scans (4DCT) as alternative. Materials and methods: In test-retest CT-scans of 26 non-small cell lung cancer (NSCLC) patients and 4DCT-scans (8 breathing phases) of 20 NSCLC and 20 oesophageal cancer patients, 1045 radiomics features of the primary tumours were calculated. A concordance correlation coefficient (CCC) >0.85 was used to identify robust features. Correlation with prognostic value was tested using univariate cox regression in 120 oesophageal cancer patients. Results: Features based on unfiltered images demonstrated greater robustness than wavelet-filtered features. In total 63/74 (85%) unfiltered features and 268/299 (90%) wavelet features stable in the 4D-lung dataset were also stable in the test-retest dataset. In oesophageal cancer 397/1045 (38%) features were robust, of which 108 features were significantly associated with overall-survival. Conclusion: 4DCT-scans can be used as alternative to eliminate unstable radiomics features as first step in a feature selection procedure. Feature robustness is tumour-site specific and independent of prognostic value. (C) 2017 The Authors. Published by Elsevier Ireland Ltd.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 48 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES
    AMADASUN, M
    KING, R
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1264 - 1274
  • [3] Test-Retest Reproducibility Analysis of Lung CT Image Features
    Balagurunathan, Yoganand
    Kumar, Virendra
    Gu, Yuhua
    Kim, Jongphil
    Wang, Hua
    Liu, Ying
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Korn, Rene
    Zhao, Binsheng
    Schwartz, Lawrence H.
    Basu, Satrajit
    Eschrich, Steven
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) : 805 - 823
  • [4] Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness
    Cheng, Qing
    Roelofs, Erik
    Ramaekers, Bram L. T.
    Eekers, Danielle
    van Soest, Johan
    Lustberg, Tim
    Hendriks, Tim
    Hoebers, Frank
    van der Laan, Hans Paul
    Korevaar, Erik W.
    Dekker, Andre
    Langendijk, Johannes A.
    Lambin, Philippe
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 118 (02) : 281 - 285
  • [5] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [6] Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736]
  • [7] New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)
    Eisenhauer, E. A.
    Therasse, P.
    Bogaerts, J.
    Schwartz, L. H.
    Sargent, D.
    Ford, R.
    Dancey, J.
    Arbuck, S.
    Gwyther, S.
    Mooney, M.
    Rubinstein, L.
    Shankar, L.
    Dodd, L.
    Kaplan, R.
    Lacombe, D.
    Verweij, J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) : 228 - 247
  • [8] Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer
    Eminowicz, Gemma
    McCormack, Mary
    [J]. RADIOTHERAPY AND ONCOLOGY, 2015, 117 (03) : 542 - 547
  • [9] Galloway M.M., 1975, COMPUTER GRAPHICS IM, V4, P172, DOI [10.1016/S0146-664X(75)80008-6, DOI 10.1016/S0146-664X(75)80008-6]
  • [10] Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: Preliminary evidence of an association with tumour metabolism, stage, and survival
    Ganeshan, B.
    Skogen, K.
    Pressney, I.
    Coutroubis, D.
    Miles, K.
    [J]. CLINICAL RADIOLOGY, 2012, 67 (02) : 157 - 164