Biologically-inspired data decorrelation for hyper-spectral imaging

被引:5
作者
Picon, Artzai [1 ]
Ghita, Ovidiu [2 ]
Rodriguez-Vaamonde, Sergio [1 ]
Ma Iriondo, Pedro [3 ]
Whelan, Paul F. [2 ]
机构
[1] Tecnalia, Informat & Interact Syst Unit, Zamudio, Bizkaia, Spain
[2] Dublin City Univ, Sch Elect Engn, Ctr Image Proc & Anal, Dublin 9, Ireland
[3] Univ Basque Country, Dept Automat Control & Syst Engn, UPV EHU, Bilbao, Spain
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
关键词
Hyper-spectral data; feature extraction; fuzzy sets; material classification; MATERIAL IDENTIFICATION; HYPERSPECTRAL IMAGERY; CLASSIFICATION; SELECTION; SENSITIVITIES; ILLUMINATION; FEATURES; CONES;
D O I
10.1186/1687-6180-2011-66
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
引用
收藏
页数:10
相关论文
共 50 条
[21]   Lip segmentation based on Lambertian shadings and morphological operators for hyper-spectral images [J].
Danielis, Alessandro ;
Giorgi, Daniela ;
Larsson, Marcus ;
Stromberg, Tomas ;
Colantonio, Sara ;
Salvetti, Ovidio .
PATTERN RECOGNITION, 2017, 63 :355-370
[22]   Biologically-inspired object recognition system for recognizing natural scene categories [J].
Alameer, Ali ;
Degenaar, Patrick ;
Nazarpour, Kianoush .
2016 INTERNATIONAL CONFERENCE FOR STUDENTS ON APPLIED ENGINEERING (ICSAE), 2016, :129-132
[23]   Lithological classification by PCA-QPSO-LSSVM method with thermal infrared hyper-spectral data [J].
Fang, Yanqi ;
Xiao, Yingxu ;
Liang, Sen ;
Ji, Yan ;
Chen, Haofeng .
JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
[24]   Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data [J].
Montesinos-Lopez, Abelardo ;
Montesinos-Lopez, Osval A. ;
Cuevas, Jaime ;
Mata-Lopez, Walter A. ;
Burgueno, Juan ;
Mondal, Sushismita ;
Huerta, Julio ;
Singh, Ravi ;
Autrique, Enrique ;
Gonzalez-Perez, Lorena ;
Crossa, Jose .
PLANT METHODS, 2017, 13
[25]   Spectral morphology for feature extraction from multi- and hyper-spectral imagery [J].
Harvey, NR ;
Porter, RB .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XI, 2005, 5806 :100-111
[26]   Hyper-spectral characteristics and classification of farmland soil in northeast of China [J].
Lu Yan-li ;
Bai You-lu ;
Yang Li-ping ;
Wang Lei ;
Wang Yi-lun ;
Ni Lu ;
Zhou Li-ping .
JOURNAL OF INTEGRATIVE AGRICULTURE, 2015, 14 (12) :2521-2528
[27]   A Multi/Hyper-Spectral Imaging System for Land Use/Land Cover Using Unmanned Aerial Systems [J].
Mancini, Adrian ;
Frontoni, Emanuele ;
Zingaretti, Primo .
2016 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2016, :1148-1155
[28]   Hyper-spectral characteristics and classification of farmland soil in northeast of China [J].
LU Yan-li ;
BAI You-lu ;
YANG Li-ping ;
WANG Lei ;
WANG Yi-lun ;
NI Lu ;
ZHOU Li-ping .
JournalofIntegrativeAgriculture, 2015, 14 (12) :2521-2528
[29]   SEMI-SUPERVISED SEMANTIC SEGMENTATION OF HYPER-SPECTRAL IMAGES [J].
Pal, Shankho Subhra ;
Mukhopadhyay, Jayanta ;
Sarkar, Sudeshna .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :7657-7660
[30]   Mediterranean forest mapping using hyper-spectral satellite imagery [J].
Etteieb, Selma ;
Louhaichi, Mounir ;
Kalaitzidis, Chariton ;
Gitas, Ioannis Z. .
ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (12) :5017-5032