On generalized symmetric SOR method for augmented systems

被引:61
作者
Zhang, Guo-Feng [1 ]
Lu, Qun-hua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
generalized symmetric SOR method; augmented systems; convergence;
D O I
10.1016/j.cam.2007.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the generalized symmetric SOR method (GSSOR) for solving the large Sparse augmented systems of linear equations, which is the extension of the SSOR iteration method. The convergence of the GSSOR method for augmented systems is studied. Numerical resume shows that this method is effective. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 12 条
[1]   ON THE AUGMENTED SYSTEM APPROACH TO SPARSE LEAST-SQUARES PROBLEMS [J].
ARIOLI, M ;
DUFF, IS ;
DERIJK, PPM .
NUMERISCHE MATHEMATIK, 1989, 55 (06) :667-684
[2]  
BAI ZZ, 2005, NUMER MATH
[3]  
BIREK A, 1994, BIT, V34, P1
[4]  
DARVISHI MT, 2006, APPL MATH COMPU 0725
[5]   Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations [J].
Elman, H ;
Silvester, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :33-46
[6]   Minimum residual methods for augmented systems [J].
Fischer, B ;
Ramage, A ;
Silvester, DJ ;
Wathen, AJ .
BIT NUMERICAL MATHEMATICS, 1998, 38 (03) :527-543
[7]   SOR-like methods for augmented systems [J].
Golub, GH ;
Wu, X ;
Yuan, JY .
BIT, 2001, 41 (01) :71-85
[8]  
Santos G.H., 1998, J COMPUT APPL MATH, V75, P1998
[9]  
SANTOS GH, 1999, INTERNAT J COMPUT MA, V75
[10]   Stability of augmented system factorizations in interior-point methods [J].
Wright, S .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :191-222