Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre

被引:35
作者
D'Alelio, Domenico [1 ]
Rampone, Salvatore [2 ]
Cusano, Luigi Maria [2 ]
Morfino, Valerio [2 ]
Russo, Luca [1 ]
Sanseverino, Nadia [2 ]
Cloern, James E. [3 ]
Lomas, Michael W. [4 ]
机构
[1] Stn Zool Anton Dohrn, Dept Integrat Marine Ecol, I-80121 Naples, Italy
[2] Univ Sannio, Via Puglie 76, I-82100 Benevento, Italy
[3] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA
[4] Bigelow Lab Ocean Sci, East Boothbay, ME USA
基金
美国国家科学基金会;
关键词
PHYTOPLANKTON COMMUNITY STRUCTURE; CLIMATE-CHANGE; SARGASSO SEA; PLANKTON; TEMPERATURE; PREDICTION; IMPACTS; DRIVEN; EXPORT; SCALE;
D O I
10.1038/s41598-020-59989-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phytoplankton play key roles in the oceans by regulating global biogeochemical cycles and production in marine food webs. Global warming is thought to affect phytoplankton production both directly, by impacting their photosynthetic metabolism, and indirectly by modifying the physical environment in which they grow. In this respect, the Bermuda Atlantic Time-series Study (BATS) in the Sargasso Sea (North Atlantic gyre) provides a unique opportunity to explore effects of warming on phytoplankton production across the vast oligotrophic ocean regions because it is one of the few multidecadal records of measured net primary productivity (NPP). We analysed the time series of phytoplankton primary productivity at BATS site using machine learning techniques (ML) to show that increased water temperature over a 27-year period (1990-2016), and the consequent weakening of vertical mixing in the upper ocean, induced a negative feedback on phytoplankton productivity by reducing the availability of essential resources, nitrogen and light. The unbalanced availability of these resources with warming, coupled with ecological changes at the community level, is expected to intensify the oligotrophic state of open-ocean regions that are far from land-based nutrient sources.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
[Anonymous], 2016, One Ecosyst, DOI DOI 10.3897/ONEECO.1.E8621
[2]  
Beale R., 1990, NEURAL COMPUTING AN, DOI DOI 10.1887/0852742622
[3]   Prediction of unprecedented biological shifts in the global ocean [J].
Beaugrand, G. ;
Conversi, A. ;
Atkinson, A. ;
Cloern, J. ;
Chiba, S. ;
Fonda-Umani, S. ;
Kirby, R. R. ;
Greene, C. H. ;
Goberville, E. ;
Otto, S. A. ;
Reid, P. C. ;
Stemmann, L. ;
Edwards, M. .
NATURE CLIMATE CHANGE, 2019, 9 (03) :237-+
[4]  
Behrenfeld MJ, 2016, NAT CLIM CHANGE, V6, P323, DOI [10.1038/NCLIMATE2838, 10.1038/nclimate2838]
[5]   Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms [J].
Behrenfeld, Michael J. ;
Boss, Emmanuel S. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 6, 2014, 6 :167-U208
[6]  
Bishop C.M., 1995, Neural networks for pattern recognition
[7]  
Bishop CM., 2006, Pattern Recognition and Machine Learning
[8]   Global phytoplankton decline over the past century [J].
Boyce, Daniel G. ;
Lewis, Marlon R. ;
Worm, Boris .
NATURE, 2010, 466 (7306) :591-596
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Impacts of Climate Change on Marine Organisms and Ecosystems [J].
Brierley, Andrew S. ;
Kingsford, Michael J. .
CURRENT BIOLOGY, 2009, 19 (14) :R602-R614