Primal hybrid finite element method for the linear elasticity problem

被引:1
|
作者
Acharya, Sanjib Kumar [1 ]
Porwal, Kamana [2 ]
机构
[1] Indian Oil Campus, Inst Chem Technol Mumbai, Bhubaneswar, Orissa, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Linear elasticity; Primal hybrid; Generalized nonconforming method; Nonconforming finite elements; Hybrid finite elements;
D O I
10.1016/j.amc.2022.127462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we study a primal hybrid finite element method for two dimensional linear elasticity problem. We derive a priori error estimates for both primal and hybrid variables. The rate of convergence of the method is independent of the Lame parameters, which illustrates the robustness of the method. Numerical experiments are presented to validate the theoretical findings. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Weighted finite element method for an elasticity problem with singularity
    Rukavishnikov, V. A.
    Nikolaev, S. G.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 705 - 709
  • [22] Weighted finite element method for elasticity problem with a crack
    Rukavishnikov, V. A.
    Mosolapov, A. O.
    Rukavishnikova, E., I
    COMPUTERS & STRUCTURES, 2021, 243
  • [23] A BOUNDARY ELEMENT METHOD FOR SIGNORINI PROBLEM IN LINEAR ELASTICITY
    韩厚德
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 1992, (01) : 66 - 74
  • [24] Boundary element method for the Cauchy problem in linear elasticity
    Marin, L
    Elliott, L
    Ingham, DB
    Lesnic, D
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (09) : 783 - 793
  • [25] Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
    Zhou, AH
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 401 - 411
  • [26] Primal hybrid finite element method for fourth order parabolic problems
    Acharya, Sanjib Kumar
    Porwal, Kamana
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 12 - 28
  • [27] On the enhanced strain finite element method for incompressible linear elasticity
    Chen, Xingding
    Hu, Qiya
    Xiao, Junmin
    APPLIED NUMERICAL MATHEMATICS, 2013, 72 : 131 - 142
  • [28] A new nonconforming mixed finite element method for linear elasticity
    Yi, Son-Young
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07): : 979 - 999
  • [29] A hybridized weak Galerkin finite element scheme for linear elasticity problem
    Zhao, Lidan
    Wang, Ruishu
    Zou, Yongkui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
  • [30] A mixed finite element method for the unilateral contact problem in elasticity
    Dongying Hua
    Lieheng Wang
    Science in China Series A, 2006, 49 : 513 - 524