Primal hybrid finite element method for the linear elasticity problem

被引:1
|
作者
Acharya, Sanjib Kumar [1 ]
Porwal, Kamana [2 ]
机构
[1] Indian Oil Campus, Inst Chem Technol Mumbai, Bhubaneswar, Orissa, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Linear elasticity; Primal hybrid; Generalized nonconforming method; Nonconforming finite elements; Hybrid finite elements;
D O I
10.1016/j.amc.2022.127462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we study a primal hybrid finite element method for two dimensional linear elasticity problem. We derive a priori error estimates for both primal and hybrid variables. The rate of convergence of the method is independent of the Lame parameters, which illustrates the robustness of the method. Numerical experiments are presented to validate the theoretical findings. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Primal hybrid finite element method for a strongly nonlinear second-order elliptic problem
    Numerical Methods for Partial Differential Equations, 1995, 11 (01):
  • [12] A convergent adaptive finite element method for the primal problem of elastoplasticity
    Carstensen, Carsten
    Orlando, Antonio
    Valdman, Jan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (13) : 1851 - 1887
  • [13] On the convergence of the primal hybrid finite element method on quadrilateral meshes
    Taraschi, Giovanni
    Correa, Maicon R.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 552 - 560
  • [14] Hybridized weak Galerkin finite element method for linear elasticity problem in mixed form
    Wang, Ruishu
    Wang, Xiaoshen
    Zhang, Kai
    Zhou, Qian
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) : 1121 - 1140
  • [15] A modified weak Galerkin finite element method for the linear elasticity problem in mixed form
    Wang, Xiuli
    Meng, Xianglong
    Zhang, Shangyou
    Zhou, Huifang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [16] Hybridized weak Galerkin finite element method for linear elasticity problem in mixed form
    Ruishu Wang
    Xiaoshen Wang
    Kai Zhang
    Qian Zhou
    Frontiers of Mathematics in China, 2018, 13 : 1121 - 1140
  • [17] A Finite Element-Meshless Hybrid Method (FEMLHM) of Elasticity Problem and Its Applications
    Zhou, Bo
    Zhang, Chao
    Zhao, Fei
    MECHANICS OF SOLIDS, 2023, 58 (03) : 852 - 871
  • [18] A Finite Element-Meshless Hybrid Method (FEMLHM) of Elasticity Problem and Its Applications
    Bo Zhou
    Chao Zhang
    Fei Zhao
    Mechanics of Solids, 2023, 58 : 852 - 871
  • [19] Mixed finite element method for the contact problem in elasticity
    Hua, DY
    Wang, LH
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (04) : 441 - 448
  • [20] Weighted finite element method for an elasticity problem with singularity
    V. A. Rukavishnikov
    S. G. Nikolaev
    Doklady Mathematics, 2013, 88 : 705 - 709