Numerical Study of Gain-Assisted Terahertz Hybrid Plasmonic Waveguide

被引:42
作者
He, Xiao Yong [2 ]
Wang, Qi Jie [1 ,2 ]
Yu, Siu Fung [3 ]
机构
[1] Nanyang Technol Univ, Div Phys & Math Sci, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
关键词
Hybrid surface plasmon polaritons; Terahertz; TMM; Waveguide; Gain; PROPAGATION;
D O I
10.1007/s11468-012-9344-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical transfer matrix method (TMM) is applied to investigate hybrid surface plasmon polaritons (HySPPs) waveguide structure, which consists of a high permittivity dielectric fiber separated from a metal surface with a low permittivity dielectric gap. The results obtained from the TMM agree well with those from the finite element method but with a faster calculation speed. As a demonstration example, we have systematically investigated the propagation properties of the gain-assisted HySPPs waveguide in the terahertz regime by using this method, studying the influences of structure parameters, frequency, temperature, and material gain. The results manifest that the effective index and the propagation loss decrease with the increase of temperature. In addition, as the frequency increases, the effective index increases and the propagation loss shows a peak. Furthermore, lossless propagation can be achieved when certain gain materials are applied into the HySPPs structure. Our method provides an efficient approach to investigate HySPPs waveguide and other plasmonic devices.
引用
收藏
页码:571 / 577
页数:7
相关论文
共 35 条
[1]   Terahertz electroluminescence from boron-doped silicon devices [J].
Adam, TN ;
Troeger, RT ;
Ray, SK ;
Lv, PC ;
Kolodzey, J .
APPLIED PHYSICS LETTERS, 2003, 83 (09) :1713-1715
[2]   Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array [J].
Azad, AK ;
Zhao, Y ;
Zhang, W .
APPLIED PHYSICS LETTERS, 2005, 86 (14) :1-3
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[5]   Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures [J].
Cao, JC .
PHYSICAL REVIEW LETTERS, 2003, 91 (23) :237401-237401
[6]   Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy [J].
Grandidier, J. ;
Massenot, S. ;
des Francs, G. Colas ;
Bouhelier, A. ;
Weeber, J. -C. ;
Markey, L. ;
Dereux, A. ;
Renger, J. ;
Gonzalez, M. U. ;
Quidant, R. .
PHYSICAL REVIEW B, 2008, 78 (24)
[7]   Investigation of terahertz Sommerfeld wave propagation along conical metal wire [J].
He, Xiao-Yong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (09) :A23-A28
[8]   Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region [J].
He, Xiao-Yong .
OPTICS EXPRESS, 2009, 17 (17) :15359-15371
[9]   Investigation of terahertz surface waves of a metallic nanowire [J].
He, Xiaoyong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (11) :2298-2303
[10]   Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure [J].
Li, D. B. ;
Ning, C. Z. .
PHYSICAL REVIEW B, 2009, 80 (15)