Dynamical Systems with a Codimension-One Invariant Manifold: The Unfoldings and Its Bifurcations

被引:6
作者
Saputra, Kie Van Ivanky [1 ]
机构
[1] Univ Pelita Harapan, Dept Math, Tangerang 15801, Banten, Indonesia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 06期
关键词
Invariant manifold; transcritical bifurcation; codimension-three Bogdanov-Takens bifurcation; saddle Hopf bifurcation; TIME-REVERSAL SYMMETRY; MODEL; CHAOS;
D O I
10.1142/S0218127415500911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a dynamical system having a special structure namely a codimension-one invariant manifold that is preserved under the variation of parameters. We derive conditions such that bifurcations of codimension-one and of codimension-two occur in the system. The normal forms of these bifurcations are derived explicitly. Both local and global bifurcations are analyzed and yield the transcritical bifurcation as the codimension-one bifurcation while the saddle-node-transcritical interaction and the Hopf-transcritical interactions as the codimension-two bifurcations. The unfolding of this degeneracy is also analyzed and reveal global bifurcations such as homoclinic and heteroclinic bifurcations. We apply our results to a modified Lotka-Volterra model and to an infection model in HIV diseases.
引用
收藏
页数:29
相关论文
共 34 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] Chaos and strange attractors in coupled oscillators with energy-preserving nonlinearity
    Adi-Kusumo, F.
    Tuwankotta, J. M.
    Setya-Budhi, W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)
  • [3] [Anonymous], 1974, I HAUTES ETUDES SCI, DOI DOI 10.1007/BF02684366
  • [4] Arnold V.I., 1978, GRADUATE TEXTS MATH, V60
  • [5] Multiparametric bifurcation analysis of a basic two-stage population model
    Baer, S. M.
    Kooi, B. W.
    Kuznetsov, Yu. A.
    Thieme, H. R.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1339 - 1365
  • [6] BAZYKIN A, 1989, PORTRAITS BIFURCATIO
  • [7] Broer H. W., 1991, Structures in Dynamics: Studies in Mathematical Physics, V2
  • [8] Bifurcation analysis of a mathematical model for malaria transmission
    Chitnis, Nakul
    Cushing, J. M.
    Hyman, J. M.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (01) : 24 - 45
  • [9] Analysis of bifurcations of limit cycles with Lyapunov exponents and numerical normal forms
    De Witte, V.
    Govaerts, W.
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 269 : 126 - 141
  • [10] Doedel E., 2008, AUTO 07P CONTINUATIO