Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources

被引:30
作者
Fang, Zhong Bo [1 ]
Xu, Xianghui [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
关键词
p-Laplacian equation; Extinction; Non-extinction; Decay estimate; BLOW-UP; DIFFUSION-EQUATIONS;
D O I
10.1016/j.nonrwa.2011.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the extinction, non-extinction and decay estimates of non-negative nontrivial weak solutions of the initial-boundary value problem for the p-Laplacian equation with nonlocal nonlinear source and interior linear absorption. We show that the critical exponent of extinction for the weak solution is determined by the competition of two nonlinear terms, and decay estimates depend on the choices of initial data, coefficients and domain. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1780 / 1789
页数:10
相关论文
共 38 条
[1]   Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations [J].
Ahmad, Bashir ;
Nieto, Juan J. .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[2]   Coexistence and optimal control problems for a degenerate predator-prey model [J].
Allegretto, W. ;
Fragnelli, G. ;
Nistri, P. ;
Papini, D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :528-540
[3]   LOCAL AND NONLOCAL WEIGHTED p-LAPLACIAN EVOLUTION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
PUBLICACIONS MATEMATIQUES, 2011, 55 (01) :27-66
[4]  
[Anonymous], 1989, Mathematical problems from combustion theory
[5]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]  
Antontsev S.N., 2002, NONLINEAR DIFFERENTI, V48
[7]  
Calsina A, 1994, PUBL MAT, V38, P315, DOI DOI 10.5565/PUBLMAT_38294_04
[8]   Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1841-1852
[9]   On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions [J].
Chang, Y. -K. ;
Nieto, J. J. ;
Li, W. -S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (03) :431-442
[10]   The extinction behavior of the solutions for a class of reaction-diffusion equations [J].
Chen, SL .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (11) :1352-1356