On a nonlocal boundary value problem for a degenerating second-order hyperbolic equation with a spectral parameter

被引:0
作者
Nakhusheva, Z. A. [1 ]
机构
[1] Russian Acad Sci, Res Inst Appl Math & Automat, Kabardino Balkar Sci Ctr, Nalchik, Russia
关键词
Spectral Parameter; Volterra Integral Equation; Nonlocal Boundary; Fundamental Relation; Volterra Kernel;
D O I
10.1134/S0012266111100107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find necessary and sufficient conditions for the unique solvability of the generalized Darboux problem for a degenerating second-order linear hyperbolic equation of the first kind with two independent variables and with a spectral parameter.
引用
收藏
页码:1468 / 1481
页数:14
相关论文
共 50 条
[31]   Solvability of boundary value problems for second-order elliptic differential-operator equations with a spectral parameter and with a discontinuous coefficient at the highest derivative [J].
B. A. Aliev ;
Ya. Yakubov .
Differential Equations, 2014, 50 :464-475
[32]   Finite-difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation [J].
M. Kh. Beshtokov .
Differential Equations, 2013, 49 :1134-1141
[33]   Finite-difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation [J].
Beshtokov, M. Kh. .
DIFFERENTIAL EQUATIONS, 2013, 49 (09) :1134-1141
[34]   Spectral problem with spectral parameter in the boundary condition in the theory of the radial heat equation [J].
N. Yu. Kapustin ;
T. E. Moiseev .
Differential Equations, 2007, 43 :1415-1419
[35]   Spectral problem with spectral parameter in the boundary condition in the theory of the radial heat equation [J].
Kapustin, N. Yu. ;
Moiseev, T. E. .
DIFFERENTIAL EQUATIONS, 2007, 43 (10) :1415-1419
[36]   A nonlocal boundary value problem for the Lavrent’ev-Bitsadze equation [J].
E. I. Moiseev ;
T. N. Likhomanenko .
Doklady Mathematics, 2012, 86 :635-637
[37]   An investigation of an inverse problem for second-order abstract differential equation [J].
Malik, Muslim ;
Ruhil, Santosh ;
Dhayal, Rajesh .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (02) :512-525
[38]   Local and nonlocal boundary-value problems for third-order hyperbolic equations [J].
Zikirov O.S. .
Journal of Mathematical Sciences, 2011, 175 (1) :104-123
[39]   ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF A BOUNDARY VALUE PROBLEM FOR A SECOND ORDER ELLIPTIC DIFFERENTIAL-OPERATOR EQUATION [J].
Aliev, Bahram A. ;
Kurbanova, Nargul K. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 :23-29
[40]   Solvability of a Nonlocal Boundary Value Problem [J].
E. I. Moiseev .
Differential Equations, 2001, 37 :1643-1646