On a nonlocal boundary value problem for a degenerating second-order hyperbolic equation with a spectral parameter

被引:0
作者
Nakhusheva, Z. A. [1 ]
机构
[1] Russian Acad Sci, Res Inst Appl Math & Automat, Kabardino Balkar Sci Ctr, Nalchik, Russia
关键词
Spectral Parameter; Volterra Integral Equation; Nonlocal Boundary; Fundamental Relation; Volterra Kernel;
D O I
10.1134/S0012266111100107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find necessary and sufficient conditions for the unique solvability of the generalized Darboux problem for a degenerating second-order linear hyperbolic equation of the first kind with two independent variables and with a spectral parameter.
引用
收藏
页码:1468 / 1481
页数:14
相关论文
共 50 条
[21]   A BOUNDARY VALUE PROBLEM FOR ELLIPTIC-DIFFERENTIAL OPERATOR EQUATIONS WITH A SPECTRAL PARAMETER IN THE EQUATION AND IN THE BOUNDARY CONDITIONS [J].
Kurbanova, Nargul K. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (01) :63-76
[22]   Some spectral properties of a boundary value problem with a spectral parameter in the boundary condition [J].
N. B. Kerimov ;
Z. S. Aliev .
Doklady Mathematics, 2006, 74 :883-886
[23]   Some spectral properties of a boundary value problem with a spectral parameter in the boundary condition [J].
Kerimov, N. B. ;
Aliev, Z. S. .
DOKLADY MATHEMATICS, 2006, 74 (03) :883-886
[24]   On a variational statement of a nonlocal boundary value problem for a fourth-order ordinary differential equation [J].
T. A. Jangveladze ;
G. B. Lobjanidze .
Differential Equations, 2009, 45 :335-343
[25]   On a variational statement of a nonlocal boundary value problem for a fourth-order ordinary differential equation [J].
Jangveladze, T. A. ;
Lobjanidze, G. B. .
DIFFERENTIAL EQUATIONS, 2009, 45 (03) :335-343
[26]   On a Boundary Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with a Fractional Order Operator [J].
Kadirkulov, B. J. ;
Jalilov, M. A. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) :2725-2737
[27]   On a Boundary Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with a Fractional Order Operator [J].
B. J. Kadirkulov ;
M. A. Jalilov .
Lobachevskii Journal of Mathematics, 2023, 44 :2725-2737
[28]   INVERSE PROBLEM FOR A SECOND-ORDER HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATION WITH VARIABLE COEFFICIENTS FOR LOWER DERIVATIVES [J].
Durdiev, D. K. ;
Totieva, Z. D. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :1106-1127
[29]   ON EIGENVALUES OF A BOUNDARY VALUE PROBLEM FOR A SECOND ORDER ELLIPTIC DIFFERENTIAL-OPERATOR EQUATION [J].
Aliev, Bahram A. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2019, 45 (02) :213-221
[30]   Solvability of Boundary Value Problems for Second-Order Elliptic Differential-Operator Equations with a Spectral Parameter and with a Discontinuous Coefficient at the Highest Derivative [J].
Aliev, B. A. ;
Yakubov, Ya. .
DIFFERENTIAL EQUATIONS, 2014, 50 (04) :464-475