Modularity of Some Distance Graphs

被引:7
作者
Ipatov, M. M. [1 ]
Koshelev, M. M. [1 ]
Raigorodskii, A. M. [1 ,2 ,3 ,4 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119991, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[3] Adyghe State Univ, Caucasus Math Ctr, Maykop 385000, Republic Of Ady, Russia
[4] Buryat State Univ, Inst Math & Comp Sci, Ulan Ude 670000, Buryat Republic, Russia
基金
俄罗斯基础研究基金会;
关键词
distance graphs; Johnson graphs; modularity; clusterization; LOWER BOUNDS; FAMILIES; NUMBERS;
D O I
10.1134/S1064562420010147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New bounds on the modularity of distance graphs were obtained and the exact value of modularity was calculated for G(n, 2, 1) graphs.
引用
收藏
页码:60 / 61
页数:2
相关论文
共 14 条
  • [1] Coloring general Kneser graphs and hypergraphs via high-discrepancy hypergraphs
    Balogh, Jozsef
    Cherkashin, Danila
    Kiselev, Sergei
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 : 228 - 236
  • [2] A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics l1 and l2
    Bogolyubsky, L. I.
    Raigorodskii, A. M.
    [J]. MATHEMATICAL NOTES, 2019, 105 (1-2) : 180 - 203
  • [3] Partition-free families of sets
    Frankl, Peter
    Kupayski, Andrey
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) : 440 - 468
  • [4] Families of sets with no matchings of sizes 3 and 4
    Frankl, Peter
    Kupavskii, Andrey
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 123 - 135
  • [5] Iskhakov L., J COMPLEX NETWORKS
  • [6] Clustering Coefficient of a Spatial Preferential Attachment Model
    Iskhakov, L. N.
    Mironov, M. S.
    Prokhorenkova, L. A.
    Kaminski, B.
    Pralat, P.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (01) : 304 - 307
  • [7] Clustering Properties of Spatial Preferential Attachment Model
    Iskhakov, Lenar
    Kaminski, Bogumil
    Mironov, Maksim
    Pralat, Pawel
    Prokhorenkova, Liudmila
    [J]. ALGORITHMS AND MODELS FOR THE WEB GRAPH (WAW 2018), 2018, 10836 : 30 - 43
  • [8] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    [J]. MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27
  • [9] Panchromatic 3-colorings of random hypergraphs
    Kravstov, Dmitry
    Krokhmal, Nikolay
    Shabanov, Dmitry
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2019, 78 : 28 - 43
  • [10] Ostroumova Prokhorenkova L., 2017, Electronic Notes in Discrete Mathematics, V61, P947, DOI 10.1016/j.endm.2017.07.058