Understanding artificial intelligence based radiology studies: What is overfitting?

被引:124
|
作者
Mutasa, Simukayi [1 ]
Sun, Shawn [1 ]
Ha, Richard [1 ]
机构
[1] Columbia Univ, New York Presbyterian Hosp, Med Ctr, 622 West 168th St,PB-1-301, New York, NY 10032 USA
关键词
Overfitting; Artificial intelligence; Machine learning; NEURAL-NETWORKS;
D O I
10.1016/j.clinimag.2020.04.025
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is a broad umbrella term used to encompass a wide variety of subfields dedicated to creating algorithms to perform tasks that mimic human intelligence. As AI development grows closer to clinical integration, radiologists will need to become familiar with the principles of artificial intelligence to properly evaluate and use this powerful tool. This series aims to explain certain basic concepts of artificial intelligence, and their applications in medical imaging starting with a concept of overfitting.
引用
收藏
页码:96 / 99
页数:4
相关论文
共 50 条
  • [41] Artificial Intelligence in Radiology: an introduction to the most important concepts
    del Barrio, A. Perez
    Fernandez-Miranda, P. Menendez
    Bellon, P. Sanz
    Iglesias, L. Lloret
    Gonzalez, D. Rodriguez
    RADIOLOGIA, 2022, 64 (03): : 228 - 236
  • [42] CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    Arash Najafi
    Roberto Luigi Cazzato
    Bernhard C. Meyer
    Philippe L. Pereira
    Angel Alberich
    Antonio López
    Maxime Ronot
    Jan Fritz
    Monique Maas
    Sean Benson
    Patrick Haage
    Fernando Gomez Munoz
    CardioVascular and Interventional Radiology, 2023, 46 : 1303 - 1307
  • [43] Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities
    Moawad, Ahmed W.
    Fuentes, David T.
    ElBanan, Mohamed G.
    Shalaby, Ahmed S.
    Guccione, Jeffrey
    Kamel, Serageldin
    Jensen, Corey T.
    Elsayes, Khaled M.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2022, 46 (01) : 78 - 90
  • [44] Artificial Intelligence and Radiology: Collaboration Is Key
    Yi, Paul H.
    Hui, Ferdinand K.
    Ting, Daniel S. W.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (05) : 781 - 783
  • [45] Artificial intelligence in musculoskeletal oncological radiology
    Vogrin, Matjaz
    Trojner, Teodor
    Kelc, Robi
    RADIOLOGY AND ONCOLOGY, 2021, 55 (01) : 1 - 6
  • [46] Artificial Intelligence in Radiology Residency Training
    Forney, Michael C.
    McBride, Aaron F.
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (01) : 74 - 80
  • [47] Artificial Intelligence in Radiology: Hype or Hope?
    Ranschaert, Erik
    JOURNAL OF THE BELGIAN SOCIETY OF RADIOLOGY, 2018, 102
  • [48] Noninterpretive Uses of Artificial Intelligence in Radiology
    Richardson, Michael L.
    Garwood, Elisabeth R.
    Lee, Yueh
    Li, Matthew D.
    Lo, Hao S.
    Nagaraju, Arun
    Nguyen, Xuan, V
    Probyn, Linda
    Rajiah, Prabhakar
    Sin, Jessica
    Wasnik, Ashish P.
    Xu, Kali
    ACADEMIC RADIOLOGY, 2021, 28 (09) : 1225 - 1235
  • [49] Artificial Intelligence and the Trainee Experience in Radiology
    Simpson, Scott A.
    Cook, Tessa S.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2020, 17 (11) : 1388 - 1393
  • [50] Artificial Intelligence, Radiology, and Tuberculosis: A Review
    Kulkarni, Sagar
    Jha, Saurabh
    ACADEMIC RADIOLOGY, 2020, 27 (01) : 71 - 75