Parallel mining of uncertain data using segmentation of data set area and Voronoi diagrams

被引:0
|
作者
Lukic, Ivica [1 ]
Hocenski, Zeljko [1 ]
Kohler, Mirko [1 ]
Galba, Tomislav [1 ]
机构
[1] Josip Juraj Strossmayer Univ Osijek, Fac Elect Engn Comp Sci & Informat Technol Osijek, Dept Comp Engn & Automat, Osijek, Croatia
关键词
Clustering algorithms; data mining; data uncertainty; Euclidean distance; parallel algorithms;
D O I
10.1080/00051144.2018.1541645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering of uncertain objects in large uncertain databases and problem of mining uncertain data has been well studied. In this paper, clustering of uncertain objects with location uncertainty is studied. Moving objects, like mobile devices, report their locations periodically, thus their locations are uncertain and best described by a probability density function. The number of objects in a database can be large which makes the process of mining accurate data, a challenging and time consuming task. Authors will give an overview of existing clustering methods and present a new approach for data mining and parallel computing of clustering problems. All existing methods use pruning to avoid expected distance calculations. It is required to calculate the expected distance numerical integration, which is time-consuming. Therefore, a new method, called Segmentation of Data Set Area-Parallel, is proposed. In this method, a data set area is divided into many small segments. Only clusters and objects in that segment are observed. The number of segments is calculated using the number and location of clusters. The use of segments gives the possibility of parallel computing, because segments are mutually independent. Thus, each segment can be computed on multiple cores.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [31] Vertical Frequent Pattern Mining from Uncertain Data
    Budhia, Bhavek P.
    Cuzzocrea, Alfredo
    Leung, Carson K.
    ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, 2012, 243 : 1273 - 1282
  • [32] Mining fuzzy association rules from uncertain data
    Cheng-Hsiung Weng
    Yen-Liang Chen
    Knowledge and Information Systems, 2010, 23 : 129 - 152
  • [33] A study of mining certain itemsets from uncertain data
    Weng, Cheng-Hsiung
    2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), 2012, : 348 - 353
  • [34] Mining fuzzy association rules from uncertain data
    Weng, Cheng-Hsiung
    Chen, Yen-Liang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 23 (02) : 129 - 152
  • [35] Improving Parallel Data Mining for Different Data Distributions in IoT Systems
    Kholod, Ivan
    Shorov, Andrey
    Gorlatch, Sergei
    INTELLIGENT DISTRIBUTED COMPUTING XIII, 2020, 868 : 75 - 85
  • [36] Improving ATM coverage area using density based clustering algorithm and voronoi diagrams
    Kisore, N. Raghu
    Koteswaraiah, Ch. B.
    INFORMATION SCIENCES, 2017, 376 : 1 - 20
  • [37] A System for Parallel Data Mining Service on Cloud
    Chen, Tao
    Chen, Jidong
    Zhou, Baoyao
    SECOND INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING / SECOND INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING AND ITS APPLICATIONS (CGC/SCA 2012), 2012, : 329 - 330
  • [38] Scalable parallel data mining for association rules
    Han, EH
    Karypis, G
    Kumar, V
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2000, 12 (03) : 337 - 352
  • [39] Effect of Data Distribution in Parallel Mining of Associations
    David W. Cheung
    Yongqiao Xiao
    Data Mining and Knowledge Discovery, 1999, 3 : 291 - 314
  • [40] CHURN ANALYSIS AND CUSTOMER SEGMENTATION OF A COSMETICS BRAND USING DATA MINING TECHNIQUES
    Kizilkaya Aydogan, Emel
    Gencer, Cevriye
    Akbulut, Sinem
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2008, 26 (01): : 43 - 57