Existence result for fractional Schrodinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition

被引:8
作者
Shen, Liejun [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
Fractional Schrodinger-Poisson systems; Bessel operator; Perturbation method; Ambrosetti-Rabinowitz type condition; Monotone assumption; POSITIVE SOLUTIONS; SOLITARY WAVES; EQUATION; MAXWELL;
D O I
10.1016/j.camwa.2017.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present study is concerned with the nontrivial solutions for fractional Schrodinger-Poisson system with the Bessel operator. Under certain assumptions on the nonlinearity f, a nontrivial nonnegative solution is obtained by perturbation method for the given problem. In particular, the Ambrosetti-Rabinowitz type condition or the monotone assumption on the nonlinearity is unnecessary. (C) 2017 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 42 条
[11]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[12]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[13]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[14]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[15]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[16]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[17]  
D'Aprile T., 2002, ADV NONLINEAR STUD, V2, P177
[18]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[19]   Scalar field equation with non-local diffusion [J].
Felmer, Patricio ;
Vergara, Ignacio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05) :1411-1428
[20]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262