Existence result for fractional Schrodinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition

被引:8
作者
Shen, Liejun [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
Fractional Schrodinger-Poisson systems; Bessel operator; Perturbation method; Ambrosetti-Rabinowitz type condition; Monotone assumption; POSITIVE SOLUTIONS; SOLITARY WAVES; EQUATION; MAXWELL;
D O I
10.1016/j.camwa.2017.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present study is concerned with the nontrivial solutions for fractional Schrodinger-Poisson system with the Bessel operator. Under certain assumptions on the nonlinearity f, a nontrivial nonnegative solution is obtained by perturbation method for the given problem. In particular, the Ambrosetti-Rabinowitz type condition or the monotone assumption on the nonlinearity is unnecessary. (C) 2017 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 42 条
[1]  
Adams D.R., 1996, GRUNDLEHREN MATHEMAT, V314, pxii
[2]  
Ambrosio V., ARXIV160106282
[3]  
Ambrosio V., ARXIV151005808
[6]  
[Anonymous], ARXIV150803088V1
[7]  
[Anonymous], 1997, Minimax theorems
[8]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[9]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[10]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313