Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries

被引:42
|
作者
Nitta, Naoki [1 ]
Lei, Danni [1 ]
Jung, Hong-Ryun [1 ]
Gordon, Daniel [1 ]
Zhao, Enbo [2 ]
Gresham, Garrett [1 ]
Cai, Jeremy [1 ]
Luzinov, Igor [3 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr Northwest, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
batteries; phosphorus; poly(acrylic acid); degradation; carbon nanotubes; FTIR; XPS; LITHIUM-ION; NEGATIVE ELECTRODES; MESOPOROUS CARBON; PERFORMANCE; COMPOSITE; TRANSITION; CHOICE; IMPACT;
D O I
10.1021/acsami.6b07931
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phosphorus (P) is an abundant element that exhibits one of the highest gravimetric and volumetric capacities for Li storage, making it a potentially attractive anode material for high capacity Li-ion batteries. However, while phosphorus carbon composite anodes have been previously explored, the influence of the inactive materials on electrode cycle performance is still poorly understood. Here, we report and explain the significant impacts of polymer binder chemistry, carbon conductive additives, and an underlayer between the Al current collector and ball milled P electrodes on cell stability. We focused our study on the commonly used polyvinylidene fluoride (PVDF) and poly(acrylic acid) (PAA) binders as well as exfoliated graphite (ExG) and carbon nanotube (CNT) additives. The mechanical properties of the binders were found to change drastically because of interactions with both the slurry and electrolyte solvents, significantly effecting the electrochenlical cycle stability of the electrodes. Binder adhesion was also found to be critical in achieving stable electrochemical cycling. The best anodes demonstrated similar to 1400 mAh/g-P gravimetric capacity after 200 cycles at C/2 rates in Li half cells.
引用
收藏
页码:25991 / 26001
页数:11
相关论文
共 50 条
  • [1] Red phosphorus composite anodes for Li-ion batteries
    Li Wang
    Zhaohui Zhou
    Jiangang Li
    Xiangming He
    Ionics, 2018, 24 : 303 - 308
  • [2] Red phosphorus composite anodes for Li-ion batteries
    Wang, Li
    Zhou, Zhaohui
    Li, Jiangang
    He, Xiangming
    IONICS, 2018, 24 (01) : 303 - 308
  • [3] Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries
    Chang, Hyeong-Seok
    Ji, Sang-Gu
    Rho, Miso
    Lee, Byoung-Min
    Kim, Sung-Soo
    Choi, Jae-Hak
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (03) : 339 - 346
  • [4] Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries
    Spinner, Neil S.
    Palmieri, Alessandro
    Beauregard, Nicole
    Zhang, Lichun
    Campanella, James
    Mustain, William E.
    JOURNAL OF POWER SOURCES, 2015, 276 : 46 - 53
  • [5] Nanocomposite anodes for use in Li-ion batteries
    Yushin, Gleb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [6] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand M.
    Grugeon S.
    Vezin H.
    Laruelle S.
    Ribière P.
    Poizot P.
    Tarascon J.-M.
    Nature Materials, 2009, 8 (2) : 120 - 125
  • [7] The dimensionality of Sn anodes in Li-ion batteries
    Wang, Bin
    Luo, Bin
    Li, Xianglong
    Zhi, Linjie
    MATERIALS TODAY, 2012, 15 (12) : 544 - 552
  • [8] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand, M.
    Grugeon, S.
    Vezin, H.
    Laruelle, S.
    Ribiere, P.
    Poizot, P.
    Tarascon, J. -M.
    NATURE MATERIALS, 2009, 8 (02) : 120 - 125
  • [9] Metal oxide anodes for Li-ion batteries
    T. Brousse
    D. Defives
    L. Pasquereau
    S. M. Lee
    U. Herterich
    D. M. Schleich
    Ionics, 1997, 3 : 332 - 337
  • [10] Metal Oxide Anodes for Li-ion Batteries
    Brousse, T.
    Defives, D.
    Pasquereau, L.
    Lee, S. M.
    Herterich, U.
    Schleich, D. M.
    IONICS, 1997, 3 (5-6) : 332 - 337