The rate of approximation of functions in an infinite interval by positive linear operators

被引:1
作者
Patel, Prashantkumar [1 ]
Rathour, Laxmi [2 ]
机构
[1] Sardar Patel Univ, Dept Math, Vallabh Vidyanagar 388120, Gujarat, India
[2] Ward 16, Anuppur 484224, Madhya Pradesh, India
关键词
Positive linear operators; modulus of continuity; weighted space;
D O I
10.1515/gmj-2022-2159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An estimation of the approximation rate by positive linear operators of functions defined on the positive half line that have finite limit at infinity is discussed. For the application of the obtained results, we introduce the positive linear operators which preserve 2(ax), a > 0, and obtain their uniform convergence, order of approximation via a certain weighted modulus of continuity, and a quantitative Voronovskaya type theorem.
引用
收藏
页码:575 / 581
页数:7
相关论文
共 20 条
[1]  
Acar T, 2017, MEDITERR J MATH, V14, DOI 10.1007/s00009-016-0804-7
[2]  
Agratini O., 1999, Ser. Math. Inform, V14, P41
[3]   On the Generalized Szasz-Mirakyan Operators [J].
Aral, A. ;
Inoan, D. ;
Rasa, I. .
RESULTS IN MATHEMATICS, 2014, 65 (3-4) :441-452
[4]  
Bustamante J., 2007, Int J Math Anal, V1, P1273
[5]   King type modification of Meyer-Konig and Zeller operators based on the q-integers [J].
Dogru, Oguen ;
Orkcu, Mediha .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) :1245-1251
[6]   Szasz-Mirakjan type operators providing a better error estimation [J].
Duman, Oktay ;
Oezarslan, M. Ali .
APPLIED MATHEMATICS LETTERS, 2007, 20 (12) :1184-1188
[7]   Modified Szasz-Mirakjan-Kantorovich Operators Preserving Linear Functions [J].
Duman, Oktay ;
Ozarslan, Mehmet Ali ;
Della Vecchia, Biancamaria .
TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (02) :151-158
[8]  
Gairola AR, 2018, IRAN J SCI TECHNOL A, V42, P1409, DOI 10.1007/s40995-017-0227-8
[9]  
Gairola AR, 2016, P NATL A SCI INDIA A, V86, P229, DOI 10.1007/s40010-016-0267-z
[10]   Local and global results for modified Szasz-Mirakjan operators [J].
Gandhi, R. B. ;
Deepmala ;
Mishra, Vishnu Narayan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) :2491-2504