Compressed Neural Network for Thermal Array-Based Fall Detection System on Embedded AI

被引:2
作者
Putri, Adinda Riztia [1 ]
Anyanwu, Goodness Oluchi [1 ]
Maharani, Mareska Pratiwi [1 ]
Lee, Jae Min [1 ]
Kim, Dong-Seong [1 ]
机构
[1] Kumoh Natl Inst Technol, Dept IT Convergence Engn, Gumi, South Korea
来源
12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION | 2021年
关键词
BiLSTM; Fall detection; GRU; LSTM; Thermal array sensor;
D O I
10.1109/ICTC52510.2021.9620781
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fall incidents may lead to more serious health issues if not promptly treated. Existing fall detection systems mostly use cameras and are considered a privacy-intrusive approach. Thermal array sensors are considered a privacy-friendly device that does not raise discomfort for users. In this study, we presented a fall detection system using a thermal array sensor with three different deep learning approaches: LSTM, BiLSTM, and GRU. Our model is optimized using the pruning method to further efficiently deployed into Embedded AI. Our result shows that BiLSTM has the most promising result by 99.93% accuracy, 99.73% precision, and 0.057% False Alarm Rate (FAR).
引用
收藏
页码:1754 / 1757
页数:4
相关论文
共 10 条
  • [1] Composite and efficient DDoS attack detection framework for B5G networks
    Amaizu, G. C.
    Nwakanma, C., I
    Bhardwaj, S.
    Lee, J. M.
    Kim, D. S.
    [J]. COMPUTER NETWORKS, 2021, 188
  • [2] A Low Power Fall Sensing Technology Based on FD-CNN
    He, Jian
    Zhang, Zihao
    Wang, Xiaoyi
    Yang, Shengqi
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (13) : 5110 - 5118
  • [3] Deep Learning Based Systems Developed for Fall Detection: A Review
    Islam, Md. Milon
    Tayan, Omar
    Islam, Md. Repon
    Islam, Md. Saiful
    Nooruddin, Sheikh
    Nomani Kabir, Muhammad
    Islam, Md. Rabiul
    [J]. IEEE ACCESS, 2020, 8 : 166117 - 166137
  • [4] Real-Time Fall Detection Using Uncalibrated Fisheye Cameras
    Kottari, Konstantina N.
    Delibasis, Konstantinos K.
    Maglogiannis, Ilias G.
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 12 (03) : 588 - 600
  • [5] Nwakanma C.I., 2021, 2021 INT C ART INT I
  • [6] Detection and Classification of Human Activity for Emergency Response in Smart Factory Shop Floor
    Nwakanma, Cosmas Ifeanyi
    Islam, Fabliha Bushra
    Maharani, Mareska Pratiwi
    Lee, Jae-Min
    Kim, Dong-Seong
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [7] Fall Detection and Activity Recognition Using Human Skeleton Features
    Ramirez, Heilym
    Velastin, Sergio A.
    Meza, Ignacio
    Fabregas, Ernesto
    Makris, Dimitrios
    Farias, Gonzalo
    [J]. IEEE ACCESS, 2021, 9 (09): : 33532 - 33542
  • [8] A Patient-Specific Single Sensor IoT-Based Wearable Fall Prediction and Detection System
    Saadeh, Wala
    Butt, Saad Adnan
    Bin Altaf, Muhammad Awais
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (05) : 995 - 1003
  • [9] A Novel Monitoring System for Fall Detection in Older People
    Taramasco, Carla
    Rodenas, Tomas
    Martinez, Felipe
    Fuentes, Paola
    Munoz, Roberto
    Olivares, Rodrigo
    De Albuquerque, Vigor Hugo C.
    Demongeot, Jacques
    [J]. IEEE ACCESS, 2018, 6 : 43563 - 43574
  • [10] Deep Neural Network Compression by In-Parallel Pruning-Quantization
    Tung, Frederick
    Mori, Greg
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (03) : 568 - 579