Paths in circuit graphs of matroids

被引:6
作者
Liu, Guizhen [1 ]
Li, Ping [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
matroid; circuit graph of matroid; path; connected matroid; critical matroid;
D O I
10.1016/j.tcs.2008.01.033
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be the circuit graph of any connected matroid. It is proved that for any two vertices of G, there is a path of length k joining them for any integer k satisfying 2 <= k <= |V (G)| - 1. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 15 条
[1]   PATHS AND CYCLES IN MATROID BASE GRAPHS [J].
ALSPACH, B ;
LIU, GZ .
GRAPHS AND COMBINATORICS, 1989, 5 (03) :207-211
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]   PANCYCLIC GRAPHS II [J].
BONDY, JA ;
INGLETON, AW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (01) :41-46
[4]   THE CONNECTIVITY OF THE BASIS GRAPH OF A BRANCHING GREEDOID [J].
BROERSMA, HJ ;
LI, XL .
JOURNAL OF GRAPH THEORY, 1992, 16 (03) :233-237
[5]  
[李乐学 Li Lexue], 2005, [山东大学学报. 理学版, Journal of Shangdong University], V40, P24
[6]  
[李乐学 Li Lexue], 2004, [山东大学学报. 理学版, Journal of Shangdong University], V39, P49
[7]  
LI P, 2007, INT C COMP SCI, V3, P440
[8]   Cycles in circuit graphs of matroids [J].
Li, Ping ;
Liu, Guizhen .
GRAPHS AND COMBINATORICS, 2007, 23 (04) :425-431
[9]  
Liu G., 1988, DISCRETE MATH, V64, P55
[10]  
Liu G, 1990, SCI CHINA, V6, P593