Maximizing a non-decreasing non-submodular function subject to various types of constraints

被引:3
作者
Lu, Cheng [1 ]
Yang, Wenguo [1 ]
Yang, Ruiqi [1 ]
Gao, Suixiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-submodular maximization; Weakly DR-submodular function; Supermodular function; Matroid; Local search; Curvature; FUNCTION MAXIMIZATION; ALGORITHM; APPROXIMATIONS; MATROIDS;
D O I
10.1007/s10898-021-01123-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we firstly study the problem of maximizing a gamma-weakly DR-submodular function under a general matroid constraint. We present a local search algorithm, which is guided by a tailored potential function, for solving this problem. We prove that our algorithm produces a (1 - e(-gamma) - epsilon)-approximate solution. To the best of our knowledge, it's the first algorithm achieving the tight approximation guarantee for such maximization problem. In addition, we study the maximization of the sum of submodular and supermodular functions. We show that this problem can be reduced to the maximization of submodular and linear sums. Based on this reduction, we derive new and improved approximation bounds for the problem under various types of constraints.
引用
收藏
页码:727 / 751
页数:25
相关论文
共 37 条
[1]   A 0.5-approximation algorithm for MAX DICUT with given sizes of parts [J].
Ageev, A ;
Hassin, R ;
Sviridenko, M .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (02) :246-255
[2]  
Bai W., 2018, P 35 INT C MACH LEAR, P304
[3]  
Brualdi R. A., 1969, Bulletin of the Australian Mathematical Society, V1, P161
[4]   MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT [J].
Calinescu, Gruia ;
Chekuri, Chandra ;
Pal, Martin ;
Vondrak, Jan .
SIAM JOURNAL ON COMPUTING, 2011, 40 (06) :1740-1766
[5]   SUBMODULAR FUNCTION MAXIMIZATION VIA THE MULTILINEAR RELAXATION AND CONTENTION RESOLUTION SCHEMES [J].
Chekuri, Chandra ;
Vondrak, Jan ;
Zenklusen, Rico .
SIAM JOURNAL ON COMPUTING, 2014, 43 (06) :1831-1879
[6]  
Chen L., 2018, INT C MACHINE LEARNI, P804
[7]   SUBMODULAR SET-FUNCTIONS, MATROIDS AND THE GREEDY ALGORITHM - TIGHT WORST-CASE BOUNDS AND SOME GENERALIZATIONS OF THE RADO-EDMONDS THEOREM [J].
CONFORTI, M ;
CORNUEJOLS, G .
DISCRETE APPLIED MATHEMATICS, 1984, 7 (03) :251-274
[8]  
Das A, 2011, P 28 INT C MACH LEAR, P1057
[9]   Greedy column subset selection for large-scale data sets [J].
Farahat, Ahmed K. ;
Elgohary, Ahmed ;
Ghodsi, Ali ;
Kamel, Mohamed S. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 45 (01) :1-34
[10]   A threshold of in n for approximating set cover [J].
Feige, U .
JOURNAL OF THE ACM, 1998, 45 (04) :634-652