Unbiased stereological estimation of the surface area of gradient surface processes

被引:8
作者
Hahn, U [1 ]
Stoyan, D
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
[2] Freiberg Univ Min & Technol, Inst Stochast, D-09596 Freiberg, Germany
关键词
gradient surface process; stereology; surface area density; vertical sections;
D O I
10.1017/S0001867800008715
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An unbiased stereological estimator for surface area density is derived for gradient surface processes which form a particular class of non-stationary spatial surface processes. Vertical planar sections are used for the estimation. The variance of the estimator is studied and found to be infinite for certain types of surface processes. A modification of the estimator is presented which exhibits finite variance.
引用
收藏
页码:904 / 920
页数:17
相关论文
共 10 条
[1]  
[Anonymous], MATH OPERATIONSFORSC
[2]   ESTIMATION OF SURFACE-AREA FROM VERTICAL SECTIONS [J].
BADDELEY, AJ ;
GUNDERSEN, HJG ;
CRUZORIVE, LM .
JOURNAL OF MICROSCOPY-OXFORD, 1986, 142 :259-276
[3]   ESTIMATION OF INDIVIDUAL FEATURE SURFACE-AREA WITH THE VERTICAL SPATIAL GRID [J].
CRUZORIVE, LM ;
HOWARD, CV .
JOURNAL OF MICROSCOPY-OXFORD, 1995, 178 :146-151
[4]  
JENSEN EB, 1987, SCAND J STAT, V14, P161
[5]  
Mecke J., 1981, Mathematische Operationsforschung und Statistik, Series Statistics, V12, P201, DOI 10.1080/02331888108801582
[6]  
Mecke J., 1980, Mathematische Operationsforschung und Statistik, Series Statistics, V11, P267, DOI 10.1080/02331888008801539
[7]  
Mecke J., 1980, Elektronische Informationsverarbeitung und Kybernetik (EIK), V16, P475
[8]  
SANDAU K, 1987, ACTA STEREOL, V6, P31
[9]  
SANDAU K, 1989, ACTA STEREOL, V8, P95
[10]  
Stoyan D., 1995, STOCHASTIC GEOMETRY