New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method

被引:9
|
作者
Batiha, Belal [1 ]
机构
[1] Jadara Univ, Fac Sci & Informat Technol, Dept Math, Irbid 21110, Jordan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
关键词
Daftardar-Gejji and Jafari method; variational iteration method; sine-Gordon equation; NUMERICAL-SOLUTION; ITERATIVE METHODS;
D O I
10.3390/sym14010057
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, the Daftardar-Gejji and Jafari method (DJM) is used to obtain an approximate analytical solution of the sine-Gordon equation. Some examples are solved to demonstrate the accuracy of DJM. A comparison study between DJM, the variational iteration method (VIM), and the exact solution are presented. The comparison of the present symmetrical results with the existing literature is satisfactory.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Special Two-Soliton Solution of sine-Gordon Equation
    AO Sheng-Mei YAN Jia-Ren Department of Physics
    Communications in Theoretical Physics, 2005, 43 (01) : 9 - 12
  • [22] Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
    Pekmen, B.
    Tezer-Sezgin, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (08) : 1702 - 1713
  • [23] The exploding solitons of the sine-Gordon equation
    Liu, Shuzhi
    Qiu, Deqin
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [24] The sine-Gordon equation in the finite line
    Ramos, JI
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 124 (01) : 45 - 93
  • [25] Weingarten surfaces and sine-Gordon equation
    Chen, WH
    Li, HZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1028 - 1035
  • [26] Identifiability for Linearized Sine-Gordon Equation
    Ha, J.
    Gutman, S.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 106 - 121
  • [27] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    Science China Mathematics, 1997, (10) : 1028 - 1035
  • [28] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [29] Weingarten surfaces and sine-Gordon equation
    Weihuan Chen
    Haizhong Li
    Science in China Series A: Mathematics, 1997, 40 : 1028 - 1035
  • [30] Conservation laws in sine-Gordon equation
    Shi, LN
    Cai, H
    Li, CF
    Huang, NN
    CHINESE PHYSICS LETTERS, 2003, 20 (07) : 1003 - 1005