q and q, t-analogs of non-commutative symmetric functions

被引:9
作者
Bergeron, N [1 ]
Zabrocki, M [1 ]
机构
[1] York Univ, Toronto, ON M3J 1P3, Canada
关键词
Non-commutative symmetric functions;
D O I
10.1016/j.disc.2004.08.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce two families of non-commutative symmetric functions that have analogous properties to the Hall-Littlewood and Macdonald symmetric functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 103
页数:25
相关论文
共 15 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]  
Bergeron F., 1999, METHODS APPL ANAL, V6, P363
[3]  
Bergeron F., 1999, CRM P LECT NOTES, V22, P1
[4]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[5]   CONJECTURES ON THE QUOTIENT RING BY DIAGONAL INVARIANTS [J].
HAIMAN, MD .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (01) :17-76
[6]   Hecke algebras, difference operators, and quasi-symmetric functions [J].
Hivert, F .
ADVANCES IN MATHEMATICS, 2000, 155 (02) :181-238
[7]  
HIVERT F, NONCOMMUTATIVE SYMME
[8]  
MACDONALD IG, 1995, SYMMETRIC FUNCTIONS
[9]   DUALITY BETWEEN QUASI-SYMMETRICAL FUNCTIONS AND THE SOLOMON DESCENT ALGEBRA [J].
MALVENUTO, C ;
REUTENAUER, C .
JOURNAL OF ALGEBRA, 1995, 177 (03) :967-982
[10]  
Stanley R., 1986, ENUMERATIVE COMBINAT, V1