Local stabilization of the compressible Navier-Stokes system, around null velocity, in one dimension

被引:16
作者
Chowdhury, Shirshendu [1 ,2 ]
Maity, Debayan [3 ]
Ramaswamy, Mythily [3 ]
Raymond, Jean-Pierre [1 ,2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
[2] CNRS, F-31062 Toulouse, France
[3] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
Compressible Navier-Stokes equations; Local stabilization; Feedback control; Distributed control; STABILIZABILITY; FEEDBACK; CONTROLLABILITY;
D O I
10.1016/j.jde.2015.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the exponential stabilization of the one dimensional compressible Navier-Stokes system, in a bounded interval (0, pi), locally around a constant steady state ((rho) over bar, 0) (rho) over bar > 0, by a localized distributed control acting only in the velocity equation. We determine a linear feedback law able to stabilize a nonlinear transformed system. Coming back to the original nonlinear system, we obtain a nonlinear feedback law able to stabilize locally this nonlinear system. To the best of our knowledge, the results of the paper are the first ones providing feedback control laws stabilizing compressible fluid flows. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:371 / 407
页数:37
相关论文
共 15 条
[1]   Exact Local Controllability for the Equations of Viscous Gas Dynamics [J].
Amosova, E. V. .
DIFFERENTIAL EQUATIONS, 2011, 47 (12) :1776-1795
[2]  
[Anonymous], 2007, SYSTEMS CONTROL FDN
[3]   BOUNDARY STABILIZABILITY OF THE LINEARIZED VISCOUS SAINT-VENANT SYSTEM [J].
Arfaoui, Hassen ;
Ben Belgacem, Faker ;
El Fekih, Henda ;
Raymond, Jean-Pierre .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03) :491-511
[4]   STABILIZATION OF PARABOLIC NONLINEAR SYSTEMS WITH FINITE DIMENSIONAL FEEDBACK OR DYNAMICAL CONTROLLERS: APPLICATION TO THE NAVIER-STOKES SYSTEM [J].
Badra, Mehdi ;
Takahashi, Takeo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) :420-463
[5]  
Barbu V, 2006, MEM AM MATH SOC, V181, P1
[6]   CONTROLLABILITY AND STABILIZABILITY OF THE LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM IN ONE DIMENSION [J].
Chowdhury, S. ;
Ramaswamy, M. ;
Raymond, J. -P. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) :2959-2987
[7]  
Corot J. M., 2007, MATH SURVEYS MONOGR, V136
[8]   Local Exact Controllability for the One-Dimensional Compressible Navier-Stokes Equation [J].
Ervedoza, Sylvain ;
Glass, Olivier ;
Guerrero, Sergio ;
Puel, Jean-Pierre .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) :189-238
[9]  
Fursikov AV, 2004, DISCRETE CONT DYN S, V10, P289
[10]  
Kesavan S, 2009, CONTROL CYBERN, V38, P1393