The open-point and bi-point-open topologies on C(X)

被引:8
作者
Jindal, Anubha [1 ]
McCoy, R. A. [2 ]
Kundu, S. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Point-open topology; Open-point topology; Bi-point-open topology; Zero-set; G(delta)-dense; Separation; Topological group; Metrizable; First countable; Separable; Second countable; Lindelof;
D O I
10.1016/j.topol.2015.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the definition of a set-open topology on C(X), the set of all real-valued continuous functions on a Tychonoff space X, we use a certain family of subsets of X and open subsets of R. But instead of using this traditional way to define topologies on in this paper, we adopt a different approach to define two interesting topologies on C(X). We call them the open-point and the bi-point-open topologies and study the separation and countability properties of these topologies. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 74
页数:13
相关论文
共 12 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 2008, TOPOLOGICAL GROUPS R
[3]  
[Anonymous], 1960, RINGS CONTINUOUS FUN
[4]  
[Anonymous], 1989, GEN TOPOLOGY
[5]   A TOPOLOGY FOR SPACES OF TRANSFORMATIONS [J].
ARENS, RF .
ANNALS OF MATHEMATICS, 1946, 47 (03) :480-495
[6]  
Arens Richard, 1951, Pac. J. Math., V1, P5
[7]  
ArkhangersIdi A. V., 1992, TOPOLOGICAL FUNCTION
[8]   ON TOPOLOGIES FOR FUNCTION SPACES [J].
FOX, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (06) :429-432
[9]   The compact-Gδ-open topology on C(X) [J].
Garg, Pratibha ;
Kundu, S. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (08) :2082-2089
[10]   COMPARISON OF TOPOLOGIES ON FUNCTION SPACES [J].
JACKSON, JR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (01) :156-158