An Examination on Autoencoder Designs for Anomaly Detection in Video Surveillance

被引:15
作者
Cruz-Esquivel, Ernesto [1 ]
Guzman-Zavaleta, Zobeida J. [1 ]
机构
[1] Univ Americas Puebla, Dept Comp Elect & Mechatron, Cholula 72810, Mexico
关键词
Anomaly detection; spatiotemporal features; video surveillance; LSTM;
D O I
10.1109/ACCESS.2022.3142247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods for video surveillance find anomalies effectively enough; however, it comes at a high computational cost and specific hardware resources demanding. In counterpart, other video analysis tasks such as video action recognition now employ techniques that reduce the need for higher computational cost. Some of those techniques can be helpful for video anomaly detection. Therefore, this paper explores the effectiveness of the potential concepts of distillation and joint spatiotemporal training, adapted to two novel convolutional autoencoder architectures for anomaly detection in video surveillance. Our experimental results show the feasibility of reducing the computational resources requirements with smaller architectures (only 6K trainable parameters), competing and outperforming current methods in challenging benchmarks.
引用
收藏
页码:6208 / 6217
页数:10
相关论文
共 50 条
[31]   VIDEO ANOMALY DETECTION VIA PREDICTIVE AUTOENCODER WITH GRADIENT-BASED ATTENTION [J].
Lai, Yuandu ;
Liu, Rui ;
Han, Yahong .
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
[32]   Autoencoder for Network Anomaly Detection [J].
Park, Won ;
Ferland, Nicolas ;
Sun, Wenting .
2022 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2022), 2022,
[33]   Real-time video anomaly detection for smart surveillance [J].
Ali, Manal Mostafa .
IET IMAGE PROCESSING, 2023, 17 (05) :1375-1388
[34]   Anomaly behavior detection analysis in video surveillance: a critical review [J].
Roka, Sanjay ;
Diwakar, Manoj ;
Singh, Prabhishek ;
Singh, Pragya .
JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
[35]   Enhanced Change and Anomaly Detection for Intelligent Video Surveillance Systems [J].
Pathirana, Siyumi ;
Bishirhafi, Shafa ;
Ratnayake, Paboda ;
Sandaruwan, Kavinda ;
Abeywardhana, Lakmini ;
Kasthurirathna, Dharshana .
2024 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY RESEARCH, ICITR, 2024,
[36]   Attention-Driven Loss for Anomaly Detection in Video Surveillance [J].
Zhou, Joey Tianyi ;
Zhang, Le ;
Fang, Zhiwen ;
Du, Jiawei ;
Peng, Xi ;
Xiao, Yang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) :4639-4647
[37]   Cognition Guided Video Anomaly Detection Framework for Surveillance Services [J].
Zhang, Menghao ;
Wang, Jingyu ;
Qi, Qi ;
Zhuang, Zirui ;
Sun, Haifeng ;
Liao, Jianxin .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (05) :2109-2123
[38]   Video Surveillance Anomaly Detection: A Review on Deep Learning Benchmarks [J].
Duja, Kashaf U. ;
Khan, Izhar Ahmed ;
Alsuhaibani, Mohammed .
IEEE ACCESS, 2024, 12 :164811-164842
[39]   ANOMALY DETECTION IN SURVEILLANCE VIDEO USING MOTION DIRECTION STATISTICS [J].
Liu, Chang ;
Wang, Guijin ;
Ning, Wenxin ;
Lin, Xinggang ;
Li, Liang ;
Liu, Zhou .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :717-720
[40]   The Impact of Mini-batch Design on EEG Classification in Anomaly Detection for Video Surveillance [J].
Nam, Sungu ;
Jang, Sang Jin ;
Song, Youngjo ;
Choi, Byunghyuk ;
Kim, Jaehyun ;
Jeong, Jaeseung .
2024 12TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI 2024, 2024,