An Examination on Autoencoder Designs for Anomaly Detection in Video Surveillance

被引:15
作者
Cruz-Esquivel, Ernesto [1 ]
Guzman-Zavaleta, Zobeida J. [1 ]
机构
[1] Univ Americas Puebla, Dept Comp Elect & Mechatron, Cholula 72810, Mexico
关键词
Anomaly detection; spatiotemporal features; video surveillance; LSTM;
D O I
10.1109/ACCESS.2022.3142247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods for video surveillance find anomalies effectively enough; however, it comes at a high computational cost and specific hardware resources demanding. In counterpart, other video analysis tasks such as video action recognition now employ techniques that reduce the need for higher computational cost. Some of those techniques can be helpful for video anomaly detection. Therefore, this paper explores the effectiveness of the potential concepts of distillation and joint spatiotemporal training, adapted to two novel convolutional autoencoder architectures for anomaly detection in video surveillance. Our experimental results show the feasibility of reducing the computational resources requirements with smaller architectures (only 6K trainable parameters), competing and outperforming current methods in challenging benchmarks.
引用
收藏
页码:6208 / 6217
页数:10
相关论文
共 50 条
[21]   Object-size invariant anomaly detection in video-surveillance [J].
SanMiguel, Juan C. ;
Martinez, Jose M. ;
Caro-Campos, Luis .
2017 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2017,
[22]   Deep Reinforcement Learning-based Anomaly Detection for Video Surveillance [J].
Aberkane, Sabrina ;
Elarbi-Boudihir, Mohamed .
INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2022, 46 (02) :291-298
[23]   Anomaly detection using edge computing in video surveillance system: review [J].
Devashree R. Patrikar ;
Mayur Rajaram Parate .
International Journal of Multimedia Information Retrieval, 2022, 11 :85-110
[24]   Contextual Anomaly Detection Based Video Surveillance System [J].
Mahmood, Sawsen Abdulhadi ;
Abid, Azal Monshed ;
Naser, Wedad Abdul Khuder .
2021 11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2021), 2021, :120-125
[25]   Anomaly Detection With Particle Filtering for Online Video Surveillance [J].
Ata-Ur-Rehman ;
Tariq, Sameema ;
Farooq, Haroon ;
Jaleel, Abdul ;
Wasif, Syed Muhammad .
IEEE ACCESS, 2021, 9 :19457-19468
[26]   Point Cloud Video Anomaly Detection Based on Point Spatiotemporal Autoencoder [J].
He, Tengjiao ;
Wang, Wenguang ;
Zeng, Guoqi .
IEEE SENSORS JOURNAL, 2024, 24 (13) :20884-20895
[27]   Anomaly detection in surveillance video based on bidirectional prediction [J].
Chen, Dongyue ;
Wang, Pengtao ;
Yue, Lingyi ;
Zhang, Yuxin ;
Jia, Tong .
IMAGE AND VISION COMPUTING, 2020, 98
[28]   A Survey of Video Datasets for Anomaly Detection in Automated Surveillance [J].
Patil, N. ;
Biswas, Prabir Kumar .
2016 SIXTH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2016), 2016, :43-48
[29]   Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild [J].
Sarker, Mohammad Ibrahim ;
Losada-Gutierrez, Cristina ;
Marron-Romera, Marta ;
Fuentes-Jimenez, David ;
Luengo-Sanchez, Sara .
SENSORS, 2021, 21 (12)
[30]   An Analysis of Artificial Intelligence Techniques in Surveillance Video Anomaly Detection: A Comprehensive Survey [J].
Sengonul, Erkan ;
Samet, Refik ;
Abu Al-Haija, Qasem ;
Alqahtani, Ali ;
Alturki, Badraddin ;
Alsulami, Abdulaziz A. .
APPLIED SCIENCES-BASEL, 2023, 13 (08)