An Examination on Autoencoder Designs for Anomaly Detection in Video Surveillance

被引:11
|
作者
Cruz-Esquivel, Ernesto [1 ]
Guzman-Zavaleta, Zobeida J. [1 ]
机构
[1] Univ Americas Puebla, Dept Comp Elect & Mechatron, Cholula 72810, Mexico
关键词
Anomaly detection; spatiotemporal features; video surveillance; LSTM;
D O I
10.1109/ACCESS.2022.3142247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods for video surveillance find anomalies effectively enough; however, it comes at a high computational cost and specific hardware resources demanding. In counterpart, other video analysis tasks such as video action recognition now employ techniques that reduce the need for higher computational cost. Some of those techniques can be helpful for video anomaly detection. Therefore, this paper explores the effectiveness of the potential concepts of distillation and joint spatiotemporal training, adapted to two novel convolutional autoencoder architectures for anomaly detection in video surveillance. Our experimental results show the feasibility of reducing the computational resources requirements with smaller architectures (only 6K trainable parameters), competing and outperforming current methods in challenging benchmarks.
引用
收藏
页码:6208 / 6217
页数:10
相关论文
共 50 条
  • [1] Deep stacked denoising autoencoder for unsupervised anomaly detection in video surveillance
    Roka, Sanjay
    Diwakar, Manoj
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)
  • [2] AnomalyNet: An Anomaly Detection Network for Video Surveillance
    Zhou, Joey Tianyi
    Du, Jiawei
    Zhu, Hongyuan
    Peng, Xi
    Liu, Yong
    Goh, Rick Siow Mong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (10) : 2537 - 2550
  • [3] Analysis of Anomaly Detection Techniques in Video Surveillance
    Ovhal, Karuna B.
    Patange, Sonal S.
    Shinde, Reshma S.
    Tarange, Vaishnavi K.
    Kotkar, Vijay A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 596 - 601
  • [4] Anomaly Detection and Modeling of Surveillance Video
    Yang F.
    Xiao B.
    Yu Z.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2708 - 2723
  • [5] Anomaly Detection in Video Surveillance via Gaussian Process
    Li, Nannan
    Wu, Xinyu
    Guo, Huiwen
    Xu, Dan
    Ou, Yongsheng
    Chen, Yen-Lun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [6] A Hierarchical Approach for Improved Anomaly Detection in Video Surveillance
    Pelvan, Soner O.
    Can, Basarbatu
    Ozkan, Huseyin
    IEEE ACCESS, 2023, 11 : 101644 - 101665
  • [7] Spatial-Temporal Cascade Autoencoder for Video Anomaly Detection in Crowded Scenes
    Li, Nanjun
    Chang, Faliang
    Liu, Chunsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 203 - 215
  • [8] Anomaly detection in video surveillance: a supervised inception encoder approach
    Kommanduri, Rangachary
    Ghorai, Mrinmoy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (32) : 78517 - 78534
  • [9] Attention-based residual autoencoder for video anomaly detection
    Le, Viet-Tuan
    Kim, Yong-Guk
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3240 - 3254
  • [10] Attention-based residual autoencoder for video anomaly detection
    Viet-Tuan Le
    Yong-Guk Kim
    Applied Intelligence, 2023, 53 : 3240 - 3254