VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy

被引:54
|
作者
Wen, Lijuan [1 ]
Tan, Yanan [2 ]
Dai, Suhuan [1 ]
Zhu, Yun [2 ]
Meng, Tingting [1 ]
Yang, Xiqin [1 ]
Liu, Yupeng [1 ]
Liu, Xuan [1 ]
Yuan, Hong [1 ]
Hu, Fuqiang [1 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ocean Coll, Zhoushan, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
VEGF; glioblastoma; pathological; tight junctions; fenestration; BLOOD-BRAIN-BARRIER; DENSITY-LIPOPROTEIN RECEPTOR; D-PEPTIDE LIGAND; GLIOMA; DELIVERY; CELLS; RELEASE; DISRUPTION; EXPRESSION; MICELLES;
D O I
10.1080/10717544.2017.1386731
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The existence of blood-brain barrier (BBB) greatly hindered the penetration and accumulation of chemotherapeutics into glioblastoma (GBM), accompany with poor therapeutic effects. The growth of GBM supervene the impairment of tight junctions (TJs); however, the pathogenesis of BBB breakdown in GBM is essentially poorly understood. This study found that vascular endothelial growth factor (VEGF) secreted by GBM cells plays an important role in increasing the permeability of BBB by disrupting endothelial tight junction proteins claudin-5 and thus gave doxorubicin (DOX)-loaded glycolipid-like nanoparticles (Ap-CSSA/DOX), an effective entrance to brain tumor region for GBM-targeting therapy. In addition, VEGF downregulates the expression of claudin-5 with a dose-dependent mode, and interfering with the VEGF/VEGFR pathway using its inhibitor axitinib could reduce the permeability of BBB and enhance the integrity of the barrier. Ap-CSSA/DOX nanoparticles showed high affinity to expressed low-density lipoprotein receptor-related proteins 1 (LRP1) in both BBB and GBM. And BBB pathological fenestration in GBM further exposed more LRP1 binding sites for Ap-CSSA/DOX nanoparticles targeting to brain tumor, resulting in a higher transmembrane transport ratio in vitro and a stronger brain tumor biodistribution in vivo, and finally realizing a considerable antitumor effect. Overall, taking advantage of BBB pathological features to design an appropriate nanodrug delivery system (NDDS) might provide new insights into other central nervous system (CNS) diseases treatment.
引用
收藏
页码:1843 / 1855
页数:13
相关论文
empty
未找到相关数据