Geometry of log-concave functions and measures

被引:105
作者
Klartag, B [1 ]
Milman, V [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
log-concave measures; log-concave functions; reverse Brunn-Minkowski; reverse Santalo; geometric inequalities;
D O I
10.1007/s10711-004-2462-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a view of log-concave measures, which enables one to build an isomorphic theory for high dimensional log-concave measures, analogous to the corresponding theory for convex bodies. Concepts such as duality and the Minkowski sum are described for log-concave functions. In this context, we interpret the Brunn-Minkowski and the Blaschke-Santalo inequalities and prove the two corresponding reverse inequalities. We also prove an analog of Milman's quotient of subspace theorem, and present a functional version of the Urysohn inequality.
引用
收藏
页码:169 / 182
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1970, PRINCETON MATH SER
[2]  
[Anonymous], 1989, GRAD TEXTS MATH
[3]  
ARTSTEIN S, SANTALO POINT FUNCTI
[4]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[5]  
Ball K. M., THESIS CAMBRIDGE
[6]  
Bobkov SG, 2003, LECT NOTES MATH, V1807, P53
[7]   CONVEX MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
ARKIV FOR MATEMATIK, 1974, 12 (02) :239-252
[8]  
Borell C., 1975, Period. Math. Hungar., V6, P111, DOI 10.1007/BF02018814
[9]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[10]   A geometric inequality and a low M-estimate [J].
Klartag, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (09) :2619-2628