Underwater Image Enhancement With Hyper-Laplacian Reflectance Priors

被引:249
作者
Zhuang, Peixian [1 ]
Wu, Jiamin [1 ]
Porikli, Fatih [2 ]
Li, Chongyi [3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Qualcomm, San Diego, CA 92121 USA
[3] Nanyang Technol Univ NTU, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Underwater enhancement; retinex variational; hyper-laplacian reflectance; alternative optimization; L-1/2; REGULARIZATION; PERFORMANCE; WATER; MODEL;
D O I
10.1109/TIP.2022.3196546
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater image enhancement aims at improving the visibility and eliminating color distortions of underwater images degraded by light absorption and scattering in water. Recently, retinex variational models show remarkable capacity of enhancing images by estimating reflectance and illumination in a retinex decomposition course. However, ambiguous details and unnatural color still challenge the performance of retinex variational models on underwater image enhancement. To overcome these limitations, we propose a hyper-laplacian reflectance priors inspired retinex variational model to enhance underwater images. Specifically, the hyper-laplacian reflectance priors are established with the l(1/2)-norm penalty on first-order and second-order gradients of the reflectance. Such priors exploit sparsity-promoting and complete-comprehensive reflectance that is used to enhance both salient structures and fine-scale details and recover the naturalness of authentic colors. Besides, the l(2) norm is found to be suitable for accurately estimating the illumination. As a result, we turn a complex underwater image enhancement issue into simple subproblems that separately and simultaneously estimate the reflection and the illumination that are harnessed to enhance underwater images in a retinex variational model. We mathematically analyze and solve the optimal solution of each subproblem. In the optimization course, we develop an alternating minimization algorithm that is efficient on element-wise operations and independent of additional prior knowledge of underwater conditions. Extensive experiments demonstrate the superiority of the proposed method in both subjective results and objective assessments over existing methods. The code is available at: https://github.com/zhuangpeixian/HLRP.
引用
收藏
页码:5442 / 5455
页数:14
相关论文
共 49 条
[1]   Sea-thru: A Method For Removing Water From Underwater Images [J].
Akkaynak, Derya ;
Treibitz, Tali .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1682-1691
[2]   Color Balance and Fusion for Underwater Image Enhancement [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Bekaert, Philippe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :379-393
[3]  
Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
[4]   Non-Local Image Dehazing [J].
Berman, Dana ;
Treibitz, Tali ;
Avidan, Shai .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1674-1682
[5]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[6]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[7]   A variational model with hybrid Hyper-Laplacian priors for Retinex [J].
Cheng, Ming-Hui ;
Huang, Ting-Zhu ;
Zhao, Xi-Le ;
Ma, Tian-Hui ;
Huang, Jie .
APPLIED MATHEMATICAL MODELLING, 2019, 66 :305-321
[8]   Underwater Image Enhancement by Wavelength Compensation and Dehazing [J].
Chiang, John Y. ;
Chen, Ying-Ching .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1756-1769
[9]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[10]   Transmission Estimation in Underwater Single Images [J].
Drews-, P., Jr. ;
do Nascimento, E. ;
Moraes, F. ;
Botelho, S. ;
Campos, M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :825-830