Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters

被引:73
作者
Grange, Thomas [1 ,2 ]
Hornecker, Gaston [1 ,2 ,3 ]
Hunger, David [4 ]
Poizat, Jean-Philippe [1 ,2 ]
Gerard, Jean-Michel [1 ,3 ]
Senellart, Pascale [5 ]
Auffeves, Alexia [1 ,2 ]
机构
[1] Univ Grenoble Alpes, Nanophys & Semicond Joint Team, F-38000 Grenoble, France
[2] CNRS, Inst Neel, Nanophys & Semicond Joint Team, F-38000 Grenoble, France
[3] CEA, INAC SP2M, Nanophys & Semicond Joint Team, F-38000 Grenoble, France
[4] Univ Munich, Fak Phys, D-80799 Munich, Germany
[5] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
关键词
DEMAND; DOT; INTERFERENCE; EMISSION; BOXES;
D O I
10.1103/PhysRevLett.114.193601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate theoretically the generation of indistinguishable single photons from a strongly dissipative quantum system placed inside an optical cavity. The degree of indistinguishability of photons emitted by the cavity is calculated as a function of the emitter-cavity coupling strength and the cavity linewidth. For a quantum emitter subject to strong pure dephasing, our calculations reveal that an unconventional regime of high indistinguishability can be reached for moderate emitter-cavity coupling strengths and high-quality factor cavities. In this regime, the broad spectrum of the dissipative quantum system is funneled into the narrow line shape of the cavity. The associated efficiency is found to greatly surpass spectral filtering effects. Our findings open the path towards on-chip scalable indistinguishablephoton- emitting devices operating at room temperature.
引用
收藏
页数:5
相关论文
共 53 条
[21]   Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J].
Gerard, JM ;
Sermage, B ;
Gayral, B ;
Legrand, B ;
Costard, E ;
Thierry-Mieg, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1110-1113
[22]   Decoherence in quantum dots due to real and virtual transitions: A nonperturbative calculation [J].
Grange, Thomas .
PHYSICAL REVIEW B, 2009, 80 (24)
[23]  
He YM, 2013, NAT NANOTECHNOL, V8, P213, DOI [10.1038/nnano.2012.262, 10.1038/NNANO.2012.262]
[24]   Temperature dependent optical properties of self-organized InAs GaAs quantum dots [J].
Heitz, R ;
Mukhametzhanov, I ;
Madhukar, A ;
Hoffmann, A ;
Bimberg, D .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (05) :520-527
[25]   Quantum nature of a strongly coupled single quantum dot-cavity system [J].
Hennessy, K. ;
Badolato, A. ;
Winger, M. ;
Gerace, D. ;
Atatuere, M. ;
Gulde, S. ;
Faelt, S. ;
Hu, E. L. ;
Imamoglu, A. .
NATURE, 2007, 445 (7130) :896-899
[26]   MEASUREMENT OF SUBPICOSECOND TIME INTERVALS BETWEEN 2 PHOTONS BY INTERFERENCE [J].
HONG, CK ;
OU, ZY ;
MANDEL, L .
PHYSICAL REVIEW LETTERS, 1987, 59 (18) :2044-2046
[27]   Decoherence in semiconductor cavity QED systems due to phonon couplings [J].
Kaer, P. ;
Mork, J. .
PHYSICAL REVIEW B, 2014, 90 (03)
[28]   Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence [J].
Kaer, P. ;
Lodahl, P. ;
Jauho, A-P. ;
Mork, J. .
PHYSICAL REVIEW B, 2013, 87 (08)
[29]   A gallium-nitride single-photon source operating at 200K [J].
Kako, Satoshi ;
Santori, Charles ;
Hoshino, Katsuyuki ;
Goetzinger, Stephan ;
Yamamoto, Yoshihisa ;
Arakawa, Yasuhiko .
NATURE MATERIALS, 2006, 5 (11) :887-892
[30]   Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond [J].
Kaupp, Hanno ;
Deutsch, Christian ;
Chang, Huan-Cheng ;
Reichel, Jakob ;
Haensch, Theodor W. ;
Hunger, David .
PHYSICAL REVIEW A, 2013, 88 (05)