Image-based malware representation approach with EfficientNet convolutional neural networks for effective malware classification

被引:31
|
作者
Chaganti, Rajasekhar [1 ]
Ravi, Vinayakumar [2 ]
Pham, Tuan D. [2 ]
机构
[1] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
[2] Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar, Saudi Arabia
关键词
CyberSecurity; Malware classification; Machine learning; Deep learning; CNN architectures; Transfer learning; EfficientNet; Malware image representation; Malware visualization; ARCHITECTURES; VISUALIZATION;
D O I
10.1016/j.jisa.2022.103306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The targeted malware attacks are usually created by few crime groups. They may essentially use their existing malware sample malicious code to rebuild the variants for sophistication and evade the malware detection. This trend emphasizes the importance of performing the malware family classification for applying the effective malware mitigation and prevention strategies. In this paper, we propose an efficient neural network model EfficientNetB1 to perform the malware family classification using the malware byte level image representation technique. To alleviate the computation resource consumption caused by deep learning (DL) models training and testing the various Convolutional Neural Network (CNN) based models, we have performed the performance and computational efficiency evaluation of the various CNN pretrained models to select the best CNN network architecture for malware classification. Additionally, the CNN pretrained models are evaluated against the different types of malware image representation methods, which are distinguished based on selection of the image width size. Our evaluation of the proposed model EfficientNetB1 shows that it has achieved an accuracy of 99% to classify the Microsoft Malware Classification Challenge (MMCC) malware classes using the malware image representation with fixed image width and also require fewer network parameters compared to other pretrained models to achieve the performance accuracy. Furthermore, various visualization techniques were used to compare the performances of the various CNN pretrained models.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Dual Convolutional Malware Network (DCMN): An Image-Based Malware Classification Using Dual Convolutional Neural Networks
    Al-Masri, Bassam
    Bakir, Nader
    El-Zaart, Ali
    Samrouth, Khouloud
    ELECTRONICS, 2024, 13 (18)
  • [2] Malware Binary Image Classification Using Convolutional Neural Networks
    Kiger, John
    Ho, Shen-Shyang
    Heydari, Vahid
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2022), 2022, : 469 - 478
  • [3] EfficientNet convolutional neural networks-based Android malware detection
    Yadav, Pooja
    Menon, Neeraj
    Ravi, Vinayakumar
    Vishvanathan, Sowmya
    Pham, Tuan D.
    COMPUTERS & SECURITY, 2020, 115
  • [4] Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network
    Jang, Sejun
    Li, Shuyu
    Sung, Yunsick
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 14
  • [5] Enhanced Image-Based Malware Classification Using Transformer-Based Convolutional Neural Networks (CNNs)
    Ashawa, Moses
    Owoh, Nsikak
    Hosseinzadeh, Salaheddin
    Osamor, Jude
    ELECTRONICS, 2024, 13 (20)
  • [6] Transfer Learning for Image-based Malware Classification
    Bhodia, Niket
    Prajapati, Pratikkumar
    Di Troia, Fabio
    Stamp, Mark
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2019, : 719 - 726
  • [7] EfficientNet deep learning meta-classifier approach for image-based android malware detection
    Vinayakumar Ravi
    Rajasekhar Chaganti
    Multimedia Tools and Applications, 2023, 82 : 24891 - 24917
  • [8] EfficientNet deep learning meta-classifier approach for image-based android malware detection
    Ravi, Vinayakumar
    Chaganti, Rajasekhar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (16) : 24891 - 24917
  • [9] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [10] IoT Malware Classification Based on Lightweight Convolutional Neural Networks
    Yuan, Baoguo
    Wang, Junfeng
    Wu, Peng
    Qing, Xianguo
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 3770 - 3783