Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces

被引:42
作者
Chen, Youxing [1 ]
Fu, Engang [2 ]
Yu, Kaiyuan [3 ]
Song, Miao [1 ]
Liu, Yue [1 ]
Wang, Yongqiang [4 ]
Wang, Haiyan [1 ,5 ]
Zhang, Xinghang [1 ,6 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China
[4] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[5] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[6] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
ION IRRADIATION TOLERANCE; HE ION; GRAIN-BOUNDARIES; STRENGTHENING MECHANISMS; IN-SITU; HELIUM; DAMAGE; SIZE; METALS; REDUCTION;
D O I
10.1557/jmr.2015.24
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent studies have shown that chemical immiscibility is important to achieve enhanced radiation tolerance in metallic multilayers as immiscible layer interfaces are more stable against radiation induced mixing than miscible interfaces. However, as most of these immiscible systems have incoherent interfaces, the influence of coherency on radiation resistance of immiscible systems remains poorly understood. Here, we report on radiation response of immiscible Cu/Fe multilayers, with individual layer thickness h varying from 0.75 to 100 nm, subjected to He ion irradiation. When interface is incoherent, the peak bubble density decreases with decreasing h and reaches a minimum when h is 5 nm. At even smaller h when interface is increasingly coherent, the peak bubble density increases again. However, void swelling in coherent multilayers with smaller h remains less than those in incoherent multilayers. Our study suggests that the coherent immiscible interface is also effective to alleviate radiation induced damage.
引用
收藏
页码:1300 / 1309
页数:10
相关论文
共 58 条
[1]   He+ ion irradiation response of Fe-TiO2 multilayers [J].
Anderoglu, O. ;
Zhou, M. J. ;
Zhang, J. ;
Wang, Y. Q. ;
Maloy, S. A. ;
Baldwin, J. K. ;
Misra, A. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 435 (1-3) :96-101
[2]   Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission [J].
Bai, Xian-Ming ;
Voter, Arthur F. ;
Hoagland, Richard G. ;
Nastasi, Michael ;
Uberuaga, Blas P. .
SCIENCE, 2010, 327 (5973) :1631-1634
[3]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[4]   Formation Mechanisms of High-density Growth Twins in Aluminum with High Stacking-Fault Energy [J].
Bufford, D. ;
Liu, Y. ;
Zhu, Y. ;
Bi, Z. ;
Jia, Q. X. ;
Wang, H. ;
Zhang, X. .
MATERIALS RESEARCH LETTERS, 2013, 1 (01) :51-60
[5]   Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films [J].
Bufford, D. ;
Bi, Z. ;
Jia, Q. X. ;
Wang, H. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2012, 101 (22)
[6]   Defect annihilation at grain boundaries in alpha-Fe [J].
Chen, Di ;
Wang, Jing ;
Chen, Tianyi ;
Shao, Lin .
SCIENTIFIC REPORTS, 2013, 3
[7]   Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J].
Chen, Y. ;
Liu, Y. ;
Fu, E. G. ;
Sun, C. ;
Yu, K. Y. ;
Song, M. ;
Li, J. ;
Wang, Y. Q. ;
Wang, H. ;
Zhang, X. .
ACTA MATERIALIA, 2015, 84 :393-404
[8]   In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers [J].
Chen, Y. ;
Jiao, L. ;
Sun, C. ;
Song, M. ;
Yu, K. Y. ;
Liu, Y. ;
Kirk, M. ;
Li, M. ;
Wang, H. ;
Zhang, X. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 452 (1-3) :321-327
[9]   Microstructure and strengthening mechanisms in Cu/Fe multilayers [J].
Chen, Y. ;
Liu, Y. ;
Sun, C. ;
Yu, K. Y. ;
Song, M. ;
Wang, H. ;
Zhang, X. .
ACTA MATERIALIA, 2012, 60 (18) :6312-6321
[10]   The role of interface structure in controlling high helium concentrations [J].
Demkowicz, M. J. ;
Misra, A. ;
Caro, A. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (03) :101-108