Modelling the genetic architecture of flowering time control in barley through nested association mapping

被引:155
作者
Maurer, Andreas [1 ]
Draba, Vera [1 ,2 ]
Jiang, Yong [3 ]
Schnaithmann, Florian [1 ]
Sharma, Rajiv [3 ]
Schumann, Erika [1 ]
Kilian, Benjamin [3 ]
Reif, Jochen Christoph [3 ]
Pillen, Klaus [1 ]
机构
[1] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06120 Halle, Germany
[2] Interdisciplinary Ctr Crop Plant Res IZN, D-06120 Halle, Germany
[3] Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Stadt Seeland, Ot Gatersleben, Germany
关键词
Barley; Wild barley; Nested association mapping (NAM); Flowering time; Genome-wide association study (GWAS); Quantitative trait locus (QTL); Genomic prediction; Epistasis; Haplotypes; MARKER-ASSISTED SELECTION; GENOME-WIDE ASSOCIATION; HORDEUM-VULGARE; WILD BARLEY; QUANTITATIVE RESISTANCE; LEAF-BLIGHT; MAIZE; DOMESTICATION; WHEAT; ADAPTATION;
D O I
10.1186/s12864-015-1459-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time. Results: Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (p(G)). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG. Conclusions: The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
引用
收藏
页数:12
相关论文
共 77 条
[11]   Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley [J].
Comadran, Jordi ;
Kilian, Benjamin ;
Russell, Joanne ;
Ramsay, Luke ;
Stein, Nils ;
Ganal, Martin ;
Shaw, Paul ;
Bayer, Micha ;
Thomas, William ;
Marshall, David ;
Hedley, Pete ;
Tondelli, Alessandro ;
Pecchioni, Nicola ;
Francia, Enrico ;
Korzun, Viktor ;
Walther, Alexander ;
Waugh, Robbie .
NATURE GENETICS, 2012, 44 (12) :1388-1392
[12]   Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels [J].
Cook, Jason P. ;
McMullen, Michael D. ;
Holland, James B. ;
Tian, Feng ;
Bradbury, Peter ;
Ross-Ibarra, Jeffrey ;
Buckler, Edward S. ;
Flint-Garcia, Sherry A. .
PLANT PHYSIOLOGY, 2012, 158 (02) :824-834
[13]   Tibet is one of the centers of domestication of cultivated barley [J].
Dai, Fei ;
Nevo, Eviatar ;
Wu, Dezhi ;
Comadran, Jordi ;
Zhou, Meixue ;
Qiu, Long ;
Chen, Zhonghua ;
Beiles, Avigdor ;
Chen, Guoxiong ;
Zhang, Guoping .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) :16969-16973
[14]   Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA [J].
Dunford, RP ;
Griffiths, S ;
Christodoulou, V ;
Laurie, DA .
THEORETICAL AND APPLIED GENETICS, 2005, 110 (05) :925-931
[15]   Wild barley: a source of genes for crop improvement in the 21st century? [J].
Ellis, RP ;
Forster, BP ;
Robinson, D ;
Handley, LL ;
Gordon, DC ;
Russell, JR ;
Powell, W .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (342) :9-17
[16]   Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons [J].
Faure, Sebastien ;
Turner, Adrian S. ;
Gruszka, Damian ;
Christodoulou, Vangelis ;
Davis, Seth J. ;
von Korff, Maria ;
Laurie, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (21) :8328-8333
[17]   TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1 [J].
Gottwald S. ;
Bauer P. ;
Komatsuda T. ;
Lundqvist U. ;
Stein N. .
BMC Research Notes, 2 (1)
[18]   Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat [J].
Gowda, M. ;
Zhao, Y. ;
Wuerschum, T. ;
Longin, C. F. H. ;
Miedaner, T. ;
Ebmeyer, E. ;
Schachschneider, R. ;
Kazman, E. ;
Schacht, J. ;
Martinant, J-P ;
Mette, M. F. ;
Reif, J. C. .
HEREDITY, 2014, 112 (05) :552-561
[19]   The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis [J].
Griffiths, S ;
Dunford, RP ;
Coupland, G ;
Laurie, DA .
PLANT PHYSIOLOGY, 2003, 131 (04) :1855-1867
[20]   The impact of population structure on genomic prediction in stratified populations [J].
Guo, Zhigang ;
Tucker, Dominic M. ;
Basten, Christopher J. ;
Gandhi, Harish ;
Ersoz, Elhan ;
Guo, Baohong ;
Xu, Zhanyou ;
Wang, Daolong ;
Gay, Gilles .
THEORETICAL AND APPLIED GENETICS, 2014, 127 (03) :749-762