Modelling the genetic architecture of flowering time control in barley through nested association mapping

被引:155
作者
Maurer, Andreas [1 ]
Draba, Vera [1 ,2 ]
Jiang, Yong [3 ]
Schnaithmann, Florian [1 ]
Sharma, Rajiv [3 ]
Schumann, Erika [1 ]
Kilian, Benjamin [3 ]
Reif, Jochen Christoph [3 ]
Pillen, Klaus [1 ]
机构
[1] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06120 Halle, Germany
[2] Interdisciplinary Ctr Crop Plant Res IZN, D-06120 Halle, Germany
[3] Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Stadt Seeland, Ot Gatersleben, Germany
关键词
Barley; Wild barley; Nested association mapping (NAM); Flowering time; Genome-wide association study (GWAS); Quantitative trait locus (QTL); Genomic prediction; Epistasis; Haplotypes; MARKER-ASSISTED SELECTION; GENOME-WIDE ASSOCIATION; HORDEUM-VULGARE; WILD BARLEY; QUANTITATIVE RESISTANCE; LEAF-BLIGHT; MAIZE; DOMESTICATION; WHEAT; ADAPTATION;
D O I
10.1186/s12864-015-1459-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time. Results: Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (p(G)). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG. Conclusions: The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
引用
收藏
页数:12
相关论文
共 77 条
[1]  
[Anonymous], 2009, CURR OPIN PLANT BIOL, DOI DOI 10.1016/j.pbi.2008.12.010
[2]   On the origin and domestication history of barley (Hordeum vulgare) [J].
Badr, A ;
Müller, K ;
Schäfer-Pregl, R ;
El Rabey, H ;
Effgen, S ;
Ibrahim, HH ;
Pozzi, C ;
Rohde, W ;
Salamini, F .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) :499-510
[3]   EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression [J].
Boden, Scott A. ;
Weiss, David ;
Ross, John J. ;
Davies, Noel W. ;
Trevaskis, Ben ;
Chandler, Peter M. ;
Swain, Steve M. .
PLANT CELL, 2014, 26 (04) :1557-1569
[4]   TASSEL: software for association mapping of complex traits in diverse samples [J].
Bradbury, Peter J. ;
Zhang, Zhiwu ;
Kroon, Dallas E. ;
Casstevens, Terry M. ;
Ramdoss, Yogesh ;
Buckler, Edward S. .
BIOINFORMATICS, 2007, 23 (19) :2633-2635
[5]   Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars [J].
Breseghello, F ;
Sorrells, ME .
GENETICS, 2006, 172 (02) :1165-1177
[6]   The Genetic Architecture of Maize Flowering Time [J].
Buckler, Edward S. ;
Holland, James B. ;
Bradbury, Peter J. ;
Acharya, Charlotte B. ;
Brown, Patrick J. ;
Browne, Chris ;
Ersoz, Elhan ;
Flint-Garcia, Sherry ;
Garcia, Arturo ;
Glaubitz, Jeffrey C. ;
Goodman, Major M. ;
Harjes, Carlos ;
Guill, Kate ;
Kroon, Dallas E. ;
Larsson, Sara ;
Lepak, Nicholas K. ;
Li, Huihui ;
Mitchell, Sharon E. ;
Pressoir, Gael ;
Peiffer, Jason A. ;
Rosas, Marco Oropeza ;
Rocheford, Torbert R. ;
Cinta Romay, M. ;
Romero, Susan ;
Salvo, Stella ;
Sanchez Villeda, Hector ;
da Silva, H. Sofia ;
Sun, Qi ;
Tian, Feng ;
Upadyayula, Narasimham ;
Ware, Doreen ;
Yates, Heather ;
Yu, Jianming ;
Zhang, Zhiwu ;
Kresovich, Stephen ;
McMullen, Michael D. .
SCIENCE, 2009, 325 (5941) :714-718
[7]  
Chen A., 2012, INT J ANTENN PROPAG, V2012, P1, DOI [10.1155/2012/304816, DOI 10.1371/J0URNAL.PGEN.1003134]
[8]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[9]   Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity [J].
Cockram, James ;
Jones, Huw ;
Leigh, Fiona J. ;
O'Sullivan, Donal ;
Powell, Wayne ;
Laurie, David A. ;
Greenland, Andrew J. .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (06) :1231-1244
[10]   Genetic variation at flowering time loci in wild and cultivated barley [J].
Cockram, James ;
Hones, Huw ;
O'Sullivan, Donal M. .
PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2011, 9 (02) :264-267