Nanostructured cathode materials for rechargeable lithium batteries

被引:98
作者
Myung, Seung-Taek [1 ]
Amine, Khalil [2 ]
Sun, Yang-Kook [3 ]
机构
[1] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Nanosize; Nanoscale; Nanostructure; Cathode; Lithium; Batteries; POSITIVE-ELECTRODE MATERIALS; SPINEL LIMN2O4 NANOWIRES; NICKEL-MANGANESE-OXIDES; ELECTROCHEMICAL PROPERTIES; HIGH-PERFORMANCE; ION BATTERY; HIGH-POWER; HYDROTHERMAL SYNTHESIS; COMPOSITE ELECTRODES; CYCLING PERFORMANCE;
D O I
10.1016/j.jpowsour.2015.02.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 236
页数:18
相关论文
共 179 条
[1]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[4]   A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1607-1613
[5]   Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material [J].
Ammundsen, B ;
Paulsen, J ;
Davidson, I ;
Liu, RS ;
Shen, CH ;
Chen, JM ;
Jang, LY ;
Lee, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A431-A436
[6]   Thermal stability of LiFePO4-based cathodes [J].
Andersson, AS ;
Thomas, JO ;
Kalska, B ;
Häggström, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (02) :66-68
[7]  
Antolini A., 1995, J SOLID STATE CHEM, V1, P117
[8]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[9]   Structural and thermal characteristics of nickel dioxide derived from LiNiO2 [J].
Arai, H ;
Tsuda, M ;
Saito, K ;
Hayashi, M ;
Takei, K ;
Sakurai, Y .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :340-349
[10]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302