On the asymptotic normality of the kernel estimators of the density function and its derivatives under censoring

被引:15
作者
Louani, D [1 ]
机构
[1] Univ Paris 06, LSTA, F-75252 Paris 05, France
关键词
asymptotic normality; censored data; consistency; density; derivative; Kaplan-Meier estimator; kernel estimator; mode;
D O I
10.1080/03610929808832263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study asymptotic normality of the kernel estimators of the density function and its derivatives as well as the mode in the randomly right censorship model. The mode estimator is defined as the random variable that maximizes the kernel density estimator. Our results are stated under some suitable conditions upon the kernel function, the smoothing parameter and both distributions functions that appear in this model. Here, the Kaplan-Meier estimator of the distribution function is used to build the estimates. We carry out a simulation study which shows how good the normality works.
引用
收藏
页码:2909 / 2924
页数:16
相关论文
共 28 条
[1]  
BLUM JR, 1980, MULTIVARIATE ANAL, V5, P213
[2]   BANDWIDTH SELECTION FOR KERNEL DENSITY-ESTIMATION [J].
CHIU, ST .
ANNALS OF STATISTICS, 1991, 19 (04) :1883-1905
[3]  
Cowling A, 1996, J ROY STAT SOC B, V58, P551
[4]   OPTIMUM KERNEL ESTIMATORS OF THE MODE [J].
EDDY, WF .
ANNALS OF STATISTICS, 1980, 8 (04) :870-882
[5]  
EFRON B, 1967, 5TH P BERK S, V4, P831
[6]   NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY [J].
EPANECHN.VA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01) :153-&
[7]  
FOLDES A, 1981, PERIOD MATH HUNGAR, V11, P233
[8]  
Foldes A., 1981, Periodica Mathematica Hungarica, V12, P15
[9]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481
[10]   WEAK AND STRONG UNIFORM CONSISTENCY RATES OF KERNEL DENSITY ESTIMATES FOR RANDOMLY CENSORED-DATA [J].
KARUNAMUNI, RJ ;
YANG, S .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04) :349-359