On the covering number of symmetric groups having degree divisible by six

被引:14
作者
Swartz, Eric [1 ]
机构
[1] Coll William & Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA
基金
澳大利亚研究理事会;
关键词
Symmetric groups; Finite union of proper subgroups; Minimal number of subgroups; PROPER SUBGROUPS; ALTERNATING GROUPS; LINEAR-GROUPS; FINITE-GROUPS; PAIRWISE; GENERATE; LOOPS; RINGS; SETS;
D O I
10.1016/j.disc.2016.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a group G is the union of proper subgroups H-1, ..., H-k, we say that the collection {H-1, ..., H-k} is a cover of G, and the size of a minimal cover (supposing one exists) is the covering number of G, denoted by sigma(G). Maroti showed that sigma(S-n) = 2(n-1) for n odd and sufficiently large, and he also gave asymptotic bounds for n even. In this paper, we determine the exact value of sigma(S-n) when n is divisible by six. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2593 / 2604
页数:12
相关论文
共 35 条
  • [1] Abdollahi A, 2007, B MALAYS MATH SCI SO, V30, P57
  • [2] Groups as Unions of Proper Subgroups
    Bhargava, Mira
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05) : 413 - 422
  • [3] Sets of permutations that generate the symmetric group pairwise
    Blackburn, Simon R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1572 - 1581
  • [4] Sets of elements that pairwise generate a linear group
    Britnell, J. R.
    Evseev, A.
    Guralnick, R. M.
    Holmes, P. E.
    Maroti, A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 442 - 465
  • [5] Sets of elements that pairwise generate a linear group (vol 115, pg 442, 2008)
    Britnell, J. R.
    Evseev, A.
    Guralnick, R. M.
    Holmes, P. E.
    Maroti, A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1152 - 1153
  • [6] Normal coverings of linear groups
    Britnell, John R.
    Maroti, Attila
    [J]. ALGEBRA & NUMBER THEORY, 2013, 7 (09) : 2085 - 2102
  • [7] Subgroup coverings of some linear groups
    Bryce, RA
    Fedri, V
    Serena, L
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) : 227 - 238
  • [8] Bubboloni D, 2014, INT J GROUP THEORY, V3, P57
  • [9] Normal coverings and pairwise generation of finite alternating and symmetric groups
    Bubboloni, Daniela
    Praeger, Cheryl E.
    Spiga, Pablo
    [J]. JOURNAL OF ALGEBRA, 2013, 390 : 199 - 215
  • [10] Normal coverings of finite symmetric and alternating groups
    Bubboloni, Daniela
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 2000 - 2024