Existence of normal subgroups in finite p-groups

被引:5
作者
Glauberman, George [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
finite p-group;
D O I
10.1016/j.jalgebra.2006.08.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose p is a prime, S is a finite p-group, and B is a subgroup of S of order p(n) and class at most c. Does S possess a normal subgroup of order p(n) and class at most c? J. Alperin showed that the answer is negative in general. In this article, we show that the answer is affirmative if n is sufficiently small relative to P. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:800 / 805
页数:6
相关论文
共 10 条
[1]   Limits of abelian subgroups of finite p-groups [J].
Alperin, JL ;
Glauberman, G .
JOURNAL OF ALGEBRA, 1998, 203 (02) :533-566
[2]   LARGE ABELIAN SUBGROUPS OF P-GROUPS [J].
ALPERIN, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :10-&
[3]  
[Anonymous], LONDON MATH SOC LECT
[4]   Alternate proofs of two theorems of Philip!Hall on finite p-groups, and some related results [J].
Berkovich, Y .
JOURNAL OF ALGEBRA, 2005, 294 (02) :463-477
[5]  
BERKOVICH YG, 1971, MATH J, V12, P654
[6]   Large subgroups of small class in finite p-groups [J].
Glauberman, G .
JOURNAL OF ALGEBRA, 2004, 272 (01) :128-153
[7]  
Hall M., 1959, The Theory of Groups
[8]  
Huppert B., 1967, GRUNDLEHREN MATH WIS, V134
[9]  
MANN A, 2002, COMMUNICATION 1001
[10]  
2006, KOUROVKA NOTEBOOK UN