Robust control of burst suppression for medical coma

被引:16
作者
Westover, M. Brandon [1 ]
Kim, Seong-Eun [2 ]
Ching, ShiNung [3 ]
Purdon, Patrick L. [4 ]
Brown, Emery N. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Washington Univ, Dept Elect & Syst Engn, St Louis, MO USA
[4] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
关键词
control; burst suppression; medical coma; anesthesia; electroencephalogram; CLOSED-LOOP CONTROL; REFRACTORY STATUS EPILEPTICUS; CRITICALLY-ILL PATIENTS; BISPECTRAL INDEX BIS; INTENSIVE-CARE-UNIT; CIRCULATORY ARREST; PHARMACOKINETIC MODELS; PERFORMANCE ASSESSMENT; PROPOFOL ANESTHESIA; GENERAL-ANESTHESIA;
D O I
10.1088/1741-2560/12/4/046004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach. We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results. In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [-0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg(-1). The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg(-1) h(-1). Performance fell within clinically acceptable limits for all measures. Significance. A CLAD system designed using robust control theory achieves clinically acceptable performance in the presence of realistic unmodeled disturbances and in spite of realistic model uncertainty, while maintaining infusion rates within acceptable safety limits.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Spatial signatures of anesthesia-induced burst-suppression differ between primates and rodents
    Sirmpilatze, Nikoloz
    Mylius, Judith
    Ortiz-Rios, Michael
    Baudewig, Juergen
    Paasonen, Jaakko
    Golkowski, Daniel
    Ranft, Andreas
    Ilg, Ruediger
    Grohn, Olli
    Boretius, Susann
    [J]. ELIFE, 2022, 11
  • [22] Substance-Specific Differences in Human Electroencephalographic Burst Suppression Patterns
    Fleischmann, Antonia
    Pilge, Stefanie
    Kiel, Tobias
    Kratzer, Stephan
    Schneider, Gerhard
    Kreuzer, Matthias
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2018, 12
  • [23] Quantitative burst suppression on serial intermittent EEG in refractory status epilepticus
    Peedicail, Joseph
    Mehdiratta, Neil
    Zhu, Shenghua
    Nedjadrasul, Paulina
    Ng, Marcus C.
    [J]. CLINICAL NEUROPHYSIOLOGY PRACTICE, 2021, 6 : 275 - 280
  • [24] Predicting Intraoperative Burst Suppression Using Preoperative EEG and Patient Characteristics
    He, Jingyi
    Karel, Joel M. H.
    Janssen, Marcus L. F.
    Gommer, Erik D.
    Vossen, Catherine J.
    Hortal, Enrique
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2025,
  • [25] Does electroencephalographic burst suppression still play a role in the perioperative setting?
    Lobo, Francisco Almeida
    Vacas, Susana
    Rossetti, Andrea O.
    Robba, Chiara
    Taccone, Fabio Silvio
    [J]. BEST PRACTICE & RESEARCH-CLINICAL ANAESTHESIOLOGY, 2021, 35 (02) : 159 - 169
  • [26] A closed-loop anesthetic delivery system for real-time control of burst suppression
    Liberman, Max Y.
    Ching, ShiNung
    Chemali, Jessica
    Brown, Emery N.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2013, 10 (04)
  • [27] EPILEPTIC EEG DISCHARGES DURING BURST SUPPRESSION
    JANTTI, V
    ERIKSSON, K
    HARTIKAINEN, K
    BAER, GA
    [J]. NEUROPEDIATRICS, 1994, 25 (05) : 271 - 273
  • [28] Automatic analysis and monitoring of burst suppression in anesthesia
    Särkelä M.
    Mustola S.
    Seppänen T.
    Koskinen M.
    Lepola P.
    Suominen K.
    Juvonen T.
    Tolvanen-Laakso H.
    Jäntti V.
    [J]. Journal of Clinical Monitoring and Computing, 2002, 17 (02) : 125 - 134
  • [29] Synchronicity of pyramidal neurones in the neocortex dominates isoflurane-induced burst suppression in mice
    Yin, Mengyu
    Wang, Ransheng
    Cai, Zhiwei
    Liang, Yi
    Mai, Fangcai
    Wu, Kaibin
    Kong, Deyi
    Tang, Peiwen
    Pan, Yidi
    Ji, Xuying
    Li, Fengxian
    Liang, Feixue
    Zhang, Hong-Fei
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2025, 134 (04) : 1122 - 1133
  • [30] Emergence delirium in children is not related to intraoperative burst suppression - prospective, observational electrography study
    Koch, Susanne
    Stegherr, Anna-Maria
    Rupp, Leopold
    Kruppa, Jochen
    Prager, Christine
    Kramer, Sylvia
    Fahlenkamp, Astrid
    Spies, Claudia
    [J]. BMC ANESTHESIOLOGY, 2019, 19 (01)