Extending Construction X for Quantum Error-Correcting Codes

被引:5
作者
Degwekar, Akshay [1 ]
Guenda, Kenza [2 ]
Gulliver, T. Aaron [3 ]
机构
[1] Indian Inst Technol Madras, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
[2] Univ Sci & Technol Algiers, USTHB, Fac Math, Bab Ezzouar, Algeria
[3] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC, Canada
来源
CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING | 2015年 / 3卷
关键词
Quantum codes; Construction X; Optimal codes; Cyclic codes;
D O I
10.1007/978-3-319-17296-5_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we extend the work of Lisonek and Singh on construction X for quantum error-correcting codes to finite fields of order p(2) where p is prime. Further, we give some new results on the Hermitian dual of repeated root cyclic codes. These results are used to construct new quantum error-correcting codes.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 8 条
[1]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes, DOI 10.1017/CBO9780511807077
[2]  
Guenda K, 2010, THESIS
[3]   SYMMETRIC AND ASYMMETRIC QUANTUM CODES [J].
Guenda, Kenza ;
Gulliver, T. Aaron .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (05)
[4]   Nonbinary stabilizer codes over finite fields [J].
Ketkar, Avanti ;
Klappenecker, Andreas ;
Kumar, Santosh ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) :4892-4914
[5]   Quantum codes from nearly self-orthogonal quaternary linear codes [J].
Lisonek, Petr ;
Singh, Vijaykumar .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (02) :417-424
[6]  
Rotman J., 2003, ADV MODERN ALGEBRA, V2nd
[7]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[8]   Multiple-particle interference and quantum error correction [J].
Steane, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1954) :2551-2577